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Preface

This book started life in the Summer of 2008, when my employer, the University of

Bristol, awarded me a one-year research fellowship. I decided to embark on writing

a general introduction to machine learning, for two reasons. One was that there was

scope for such a book, to complement the many more specialist texts that are available;

the other was that through writing I would learn new things – after all, the best way to

learn is to teach.

The challenge facing anyone attempting to write an introductory machine learn-

ing text is to do justice to the incredible richness of the machine learning field without

losing sight of its unifying principles. Put too much emphasis on the diversity of the

discipline and you risk ending up with a ‘cookbook’ without much coherence; stress

your favourite paradigm too much and you may leave out too much of the other in-

teresting stuff. Partly through a process of trial and error, I arrived at the approach

embodied in the book, which is is to emphasise both unity and diversity: unity by sep-

arate treatment of tasks and features, both of which are common across any machine

learning approach but are often taken for granted; and diversity through coverage of a

wide range of logical, geometric and probabilistic models.

Clearly, one cannot hope to cover all of machine learning to any reasonable depth

within the confines of 400 pages. In the Epilogue I list some important areas for further

study which I decided not to include. In my view, machine learning is a marriage of

statistics and knowledge representation, and the subject matter of the book was chosen

to reinforce that view. Thus, ample space has been reserved for tree and rule learning,

before moving on to the more statistically-oriented material. Throughout the book I

have placed particular emphasis on intuitions, hopefully amplified by a generous use

xv



xvi Preface

of examples and graphical illustrations, many of which derive from my work on the use

of ROC analysis in machine learning.

How to read the book

The printed book is a linear medium and the material has therefore been organised in

such a way that it can be read from cover to cover. However, this is not to say that one

couldn’t pick and mix, as I have tried to organise things in a modular fashion.

For example, someone who wants to read about his or her first learning algorithm

as soon as possible could start with Section 2.1, which explains binary classification,

and then fast-forward to Chapter 5 and read about learning decision trees without se-

rious continuity problems. After reading Section 5.1 that same person could skip to the

first two sections of Chapter 6 to learn about rule-based classifiers.

Alternatively, someone who is interested in linear models could proceed to Section

3.2 on regression tasks after Section 2.1, and then skip to Chapter 7 which starts with

linear regression. There is a certain logic in the order of Chapters 4–9 on logical, ge-

ometric and probabilistic models, but they can mostly be read independently; similar

for the material in Chapters 10–12 on features, model ensembles and machine learning

experiments.

I should also mention that the Prologue and Chapter 1 are introductory and rea-

sonably self-contained: the Prologue does contain some technical detail but should be

understandable even at pre-University level, while Chapter 1 gives a condensed, high-

level overview of most of the material covered in the book. Both chapters are freely

available for download from the book’s web site atwww.cs.bris.ac.uk/~flach/

mlbook; over time, other material will be added, such as lecture slides. As a book of

this scope will inevitably contain small errors, the web site also has a form for letting

me know of any errors you spotted and a list of errata.
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Prologue: A machine learning sampler

Y
OU MAY NOT be aware of it, but chances are that you are already a regular user of ma-

chine learning technology. Most current e-mail clients incorporate algorithms to iden-

tify and filter out spam e-mail, also known as junk e-mail or unsolicited bulk e-mail.

Early spam filters relied on hand-coded pattern matching techniques such as regular

expressions, but it soon became apparent that this is hard to maintain and offers in-

sufficient flexibility – after all, one person’s spam is another person’s ham!1 Additional

adaptivity and flexibility is achieved by employing machine learning techniques.

SpamAssassin is a widely used open-source spam filter. It calculates a score for

an incoming e-mail, based on a number of built-in rules or ‘tests’ in SpamAssassin’s

terminology, and adds a ‘junk’ flag and a summary report to the e-mail’s headers if the

score is 5 or more. Here is an example report for an e-mail I received:

-0.1 RCVD_IN_MXRATE_WL RBL: MXRate recommends allowing

[123.45.6.789 listed in sub.mxrate.net]

0.6 HTML_IMAGE_RATIO_02 BODY: HTML has a low ratio of text to image area

1.2 TVD_FW_GRAPHIC_NAME_MID BODY: TVD_FW_GRAPHIC_NAME_MID

0.0 HTML_MESSAGE BODY: HTML included in message

0.6 HTML_FONx_FACE_BAD BODY: HTML font face is not a word

1.4 SARE_GIF_ATTACH FULL: Email has a inline gif

0.1 BOUNCE_MESSAGE MTA bounce message

0.1 ANY_BOUNCE_MESSAGE Message is some kind of bounce message

1.4 AWL AWL: From: address is in the auto white-list

1Spam, a contraction of ‘spiced ham’, is the name of a meat product that achieved notoriety by being

ridiculed in a 1970 episode of Monty Python’s Flying Circus.

1



2 Prologue: A machine learning sampler

From left to right you see the score attached to a particular test, the test identifier, and

a short description including a reference to the relevant part of the e-mail. As you see,

scores for individual tests can be negative (indicating evidence suggesting the e-mail

is ham rather than spam) as well as positive. The overall score of 5.3 suggests the e-

mail might be spam. As it happens, this particular e-mail was a notification from an

intermediate server that another message – which had a whopping score of 14.6 – was

rejected as spam. This ‘bounce’ message included the original message and therefore

inherited some of its characteristics, such as a low text-to-image ratio, which pushed

the score over the threshold of 5.

Here is another example, this time of an important e-mail I had been expecting for

some time, only for it to be found languishing in my spam folder:

2.5 URI_NOVOWEL URI: URI hostname has long non-vowel sequence

3.1 FROM_DOMAIN_NOVOWEL From: domain has series of non-vowel letters

The e-mail in question concerned a paper that one of the members of my group and

I had submitted to the European Conference on Machine Learning (ECML) and the

European Conference on Principles and Practice of Knowledge Discovery in Databases

(PKDD), which have been jointly organised since 2001. The 2008 instalment of these

conferences used the internet domain www.ecmlpkdd2008.org – a perfectly re-

spectable one, as machine learning researchers know, but also one with eleven ‘non-

vowels’ in succession – enough to raise SpamAssassin’s suspicion! The example demon-

strates that the importance of a SpamAssassin test can be different for different users.

Machine learning is an excellent way of creating software that adapts to the user.

�

How does SpamAssassin determine the scores or ‘weights’ for each of the dozens of

tests it applies? This is where machine learning comes in. Suppose we have a large

‘training set’ of e-mails which have been hand-labelled spam or ham, and we know

the results of all the tests for each of these e-mails. The goal is now to come up with a

weight for every test, such that all spam e-mails receive a score above 5, and all ham

e-mails get less than 5. As we will discuss later in the book, there are a number of ma-

chine learning techniques that solve exactly this problem. For the moment, a simple

example will illustrate the main idea.

Example 1 (Linear classification). Suppose we have only two tests and four

training e-mails, one of which is spam (see Table 1). Both tests succeed for the
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E-mail x1 x2 Spam? 4x1+4x2

1 1 1 1 8

2 0 0 0 0

3 1 0 0 4

4 0 1 0 4

Table 1. A small training set for SpamAssassin. The columns marked x1 and x2 indicate the

results of two tests on four different e-mails. The fourth column indicates which of the e-mails

are spam. The right-most column demonstrates that by thresholding the function 4x1+4x2 at 5,

we can separate spam from ham.

spam e-mail; for one ham e-mail neither test succeeds, for another the first test

succeeds and the second doesn’t, and for the third ham e-mail the first test fails

and the second succeeds. It is easy to see that assigning both tests a weight

of 4 correctly ‘classifies’ these four e-mails into spam and ham. In the mathe-

matical notation introduced in Background 1 we could describe this classifier as

4x1+4x2 > 5 or (4,4) · (x1, x2) > 5. In fact, any weight between 2.5 and 5 will en-

sure that the threshold of 5 is only exceeded when both tests succeed. We could

even consider assigning different weights to the tests – as long as each weight is

less than 5 and their sum exceeds 5 – although it is hard to see how this could be

justified by the training data.

But what does this have to do with learning, I hear you ask? It is just a mathematical

problem, after all. That may be true, but it does not appear unreasonable to say that

SpamAssassin learns to recognise spam e-mail from examples and counter-examples.

Moreover, the more training data is made available, the better SpamAssassin will be-

come at this task. The notion of performance improving with experience is central to

most, if not all, forms of machine learning. We will use the following general definition:

Machine learning is the systematic study of algorithms and systems that improve their

knowledge or performance with experience. In the case of SpamAssassin, the ‘experi-

ence’ it learns from is some correctly labelled training data, and ‘performance’ refers to

its ability to recognise spam e-mail. A schematic view of how machine learning feeds

into the spam e-mail classification task is given in Figure 2. In other machine learn-

ing problems experience may take a different form, such as corrections of mistakes,

rewards when a certain goal is reached, among many others. Also note that, just as is

the case with human learning, machine learning is not always directed at improving

performance on a certain task, but may more generally result in improved knowledge.
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There are a number of useful ways in which we can express the SpamAssassin

classifier in mathematical notation. If we denote the result of the i -th test for

a given e-mail as xi , where xi = 1 if the test succeeds and 0 otherwise, and we

denote the weight of the i -th test as wi , then the total score of an e-mail can be

expressed as
∑n

i=1 wi xi , making use of the fact that wi contributes to the sum

only if xi = 1, i.e., if the test succeeds for the e-mail. Using t for the threshold

above which an e-mail is classified as spam (5 in our example), the ‘decision rule’

can be written as
∑n

i=1 wi xi > t .

Notice that the left-hand side of this inequality is linear in the xi variables, which

essentially means that increasing one of the xi by a certain amount, say δ, will

change the sum by an amount (wiδ) that is independent of the value of xi . This

wouldn’t be true if xi appeared squared in the sum, or with any exponent other

than 1.

The notation can be simplified by means of linear algebra, writing w for the vec-

tor of weights (w1, . . . , wn) and x for the vector of test results (x1, . . . , xn). The

above inequality can then be written using a dot product: w ·x> t . Changing the

inequality to an equality w ·x = t , we obtain the ‘decision boundary’, separating

spam from ham. The decision boundary is a plane (a ‘straight’ surface) in the

space spanned by the xi variables because of the linearity of the left-hand side.

The vector w is perpendicular to this plane and points in the direction of spam.

Figure 1 visualises this for two variables.

It is sometimes convenient to simplify notation further by introducing an ex-

tra constant ‘variable’ x0 = 1, the weight of which is fixed to w0 = −t . The ex-

tended data point is then x◦ = (1, x1, . . . , xn) and the extended weight vector is

w◦ = (−t , w1, . . . , wn), leading to the decision rule w◦ · x◦ > 0 and the decision

boundary w◦ · x◦ = 0. Thanks to these so-called homogeneous coordinates the

decision boundary passes through the origin of the extended coordinate system,

at the expense of needing an additional dimension (but note that this doesn’t re-

ally affect the data, as all data points and the ‘real’ decision boundary live in the

plane x0 = 1).

Background 1. SpamAssassin in mathematical notation. In boxes such as these, I will

briefly remind you of useful concepts and notation. If some of these are unfamiliar, you

will need to spend some time reviewing them – using other books or online resources such

as www.wikipedia.org or mathworld.wolfram.com – to fully appreciate the rest

of the book.
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Figure 1. An example of linear classification in two dimensions. The straight line separates the

positives from the negatives. It is defined by w ·xi = t , where w is a vector perpendicular to the

decision boundary and pointing in the direction of the positives, t is the decision threshold, and

xi points to a point on the decision boundary. In particular, x0 points in the same direction as

w, from which it follows that w ·x0 = ||w|| ||x0|| = t (||x|| denotes the length of the vector x). The

decision boundary can therefore equivalently be described by w·(x−x0)= 0, which is sometimes

more convenient. In particular, this notation makes it clear that it is the orientation but not the

length of w that determines the location of the decision boundary.

SpamAssassin 
tests

Linear classifier
E-mails Data Spam?

weights

Learn weights
Training data

Figure 2. At the top we see how SpamAssassin approaches the spam e-mail classification task:

the text of each e-mail is converted into a data point by means of SpamAssassin’s built-in tests,

and a linear classifier is applied to obtain a ‘spam or ham’ decision. At the bottom (in blue) we

see the bit that is done by machine learning.

We have already seen that a machine learning problem may have several solutions,

even a problem as simple as the one from Example 1. This raises the question of how

we choose among these solutions. One way to think about this is to realise that we don’t

really care that much about performance on training data – we already know which of
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those e-mails are spam! What we care about is whether future e-mails are going to be

classified correctly. While this appears to lead into a vicious circle – in order to know

whether an e-mail is classified correctly I need to know its true class, but as soon as I

know its true class I don’t need the classifier anymore – it is important to keep in mind

that good performance on training data is only a means to an end, not a goal in itself.

In fact, trying too hard to achieve good performance on the training data can easily

lead to a fascinating but potentially damaging phenomenon called overfitting.

Example 2 (Overfitting). Imagine you are preparing for your Machine Learning

101 exam. Helpfully, Professor Flach has made previous exam papers and their

worked answers available online. You begin by trying to answer the questions

from previous papers and comparing your answers with the model answers pro-

vided. Unfortunately, you get carried away and spend all your time on mem-

orising the model answers to all past questions. Now, if the upcoming exam

completely consists of past questions, you are certain to do very well. But if the

new exam asks different questions about the same material, you would be ill-

prepared and get a much lower mark than with a more traditional preparation.

In this case, one could say that you were overfitting the past exam papers and

that the knowledge gained didn’t generalise to future exam questions.

Generalisation is probably the most fundamental concept in machine learning. If

the knowledge that SpamAssassin has gleaned from its training data carries over – gen-

eralises – to your e-mails, you are happy; if not, you start looking for a better spam filter.

However, overfitting is not the only possible reason for poor performance on new data.

It may just be that the training data used by the SpamAssassin programmers to set

its weights is not representative for the kind of e-mails you get. Luckily, this problem

does have a solution: use different training data that exhibits the same characteristics,

if possible actual spam and ham e-mails that you have personally received. Machine

learning is a great technology for adapting the behaviour of software to your own per-

sonal circumstances, and many spam e-mail filters allow the use of your own training

data.

So, if there are several possible solutions, care must be taken to select one that

doesn’t overfit the data. We will discuss several ways of doing that in this book. What

about the opposite situation, if there isn’t a solution that perfectly classifies the train-

ing data? For instance, imagine that e-mail 2 in Example 1, the one for which both tests

failed, was spam rather than ham – in that case, there isn’t a single straight line sepa-

rating spam from ham (you may want to convince yourself of this by plotting the four
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e-mails as points in a grid, with x1 on one axis and x2 on the other). There are several

possible approaches to this situation. One is to ignore it: that e-mail may be atypical,

or it may be mis-labelled (so-called noise). Another possibility is to switch to a more

expressive type of classifier. For instance, we may introduce a second decision rule for

spam: in addition to 4x1 + 4x2 > 5 we could alternatively have 4x1 + 4x2 < 1. Notice

that this involves learning a different threshold, and possibly a different weight vector

as well. This is only really an option if there is enough training data available to reliably

learn those additional parameters.

�

Linear classification, SpamAssassin-style, may serve as a useful introduction, but this

book would have been a lot shorter if that was the only type of machine learning. What

about learning not just the weights for the tests, but also the tests themselves? How do

we decide if the text-to-image ratio is a good test? Indeed, how do we come up with

such a test in the first place? This is an area where machine learning has a lot to offer.

One thing that may have occurred to you is that the SpamAssassin tests considered

so far don’t appear to take much notice of the contents of the e-mail. Surely words

and phrases like ‘Viagra’, ‘free iPod’ or ‘confirm your account details’ are good spam

indicators, while others – for instance, a particular nickname that only your friends use

– point in the direction of ham. For this reason, many spam e-mail filters employ text

classification techniques. Broadly speaking, such techniques maintain a vocabulary

of words and phrases that are potential spam or ham indicators. For each of those

words and phrases, statistics are collected from a training set. For instance, suppose

that the word ‘Viagra’ occurred in four spam e-mails and in one ham e-mail. If we

then encounter a new e-mail that contains the word ‘Viagra’, we might reason that the

odds that this e-mail is spam are 4:1, or the probability of it being spam is 0.80 and

the probability of it being ham is 0.20 (see Background 2 for some basic notions of

probability theory).

The situation is slightly more subtle than you might realise because we have to take

into account the prevalence of spam. Suppose, for the sake of argument, that I receive

on average one spam e-mail for every six ham e-mails (I wish!). This means that I would

estimate the odds of the next e-mail coming in being spam as 1:6, i.e., non-negligible

but not very high either. If I then learn that the e-mail contains the word ‘Viagra’, which

occurs four times as often in spam as in ham, I somehow need to combine these two

odds. As we shall see later, Bayes’ rule tells us that we should simply multiply them:

1:6 times 4:1 is 4:6, corresponding to a spam probability of 0.4. In other words, despite

the occurrence of the word ‘Viagra’, the safest bet is still that the e-mail is ham. That

doesn’t make sense, or does it?
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Probabilities involve ‘random variables’ that describe outcomes of ‘events’. These events

are often hypothetical and therefore probabilities have to be estimated. For example, con-

sider the statement ‘42% of the UK population approves of the current Prime Minister’.

The only way to know this for certain is to ask everyone in the UK, which is of course

unfeasible. Instead, a (hopefully representative) sample is queried, and a more correct

statement would then be ‘42% of a sample drawn from the UK population approves of the

current Prime Minister’, or ‘the proportion of the UK population approving of the current

Prime Minister is estimated at 42%’. Notice that these statements are formulated in terms

of proportions or ‘relative frequencies’; a corresponding statement expressed in terms of

probabilities would be ‘the probability that a person uniformly drawn from the UK popu-

lation approves of the current Prime Minister is estimated at 0.42’. The event here is ‘this

random person approves of the PM’.

The ‘conditional probability’ P (A|B) is the probability of event A happening given that

event B happened. For instance, the approval rate of the Prime Minister may differ for

men and women. Writing P (PM) for the probability that a random person approves of the

Prime Minister and P (PM|woman) for the probability that a random woman approves of

the Prime Minister, we then have that P (PM|woman)= P (PM,woman)/P (woman), where

P (PM,woman) is the probability of the ‘joint event’ that a random person both approves

of the PM and is a woman, and P (woman) is the probability that a random person is a

woman (i.e., the proportion of women in the UK population).

Other useful equations include P (A,B) = P (A|B)P (B) = P (B |A)P (A) and P (A|B) =
P (B |A)P (A)/P (B). The latter is known as ‘Bayes’ rule’ and will play an impor-

tant role in this book. Notice that many of these equations can be extended to

more than two random variables, e.g. the ‘chain rule of probability’: P (A,B,C ,D) =
P (A|B ,C ,D)P (B |C ,D)P (C |D)P (D).

Two events A and B are independent if P (A|B) = P (A), i.e., if knowing that B happened

doesn’t change the probability of A happening. An equivalent formulation is P (A,B) =
P (A)P (B). In general, multiplying probabilities involves the assumption that the corre-

sponding events are independent.

The ‘odds’ of an event is the ratio of the probability that the event happens and the proba-

bility that it doesn’t happen. That is, if the probability of a particular event happening is p,

then the corresponding odds are o = p/(1−p). Conversely, we have that p = o/(o+1). So,

for example, a probability of 0.8 corresponds to odds of 4:1, the opposite odds of 1:4 give

probability 0.2, and if the event is as likely to occur as not then the probability is 0.5 and

the odds are 1:1. While we will most often use the probability scale, odds are sometimes

more convenient because they are expressed on a multiplicative scale.

Background 2. The basics of probability.
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The way to make sense of this is to realise that you are combining two independent

pieces of evidence, one concerning the prevalence of spam, and the other concerning

the occurrence of the word ‘Viagra’. These two pieces of evidence pull in opposite di-

rections, which means that it is important to assess their relative strength. What the

numbers tell you is that, in order to overrule the fact that spam is relatively rare, you

need odds of at least 6:1. ‘Viagra’ on its own is estimated at 4:1, and therefore doesn’t

pull hard enough in the spam direction to warrant the conclusion that the e-mail is in

fact spam. What it does do is make the conclusion ‘this e-mail is ham’ a lot less certain,

as its probability drops from 6/7= 0.86 to 6/10= 0.60.

The nice thing about this ‘Bayesian’ classification scheme is that it can be repeated

if you have further evidence. For instance, suppose that the odds in favour of spam

associated with the phrase ‘blue pill’ is estimated at 3:1 (i.e., there are three times more

spam e-mails containing the phrase than there are ham e-mails), and suppose our e-

mail contains both ‘Viagra’ and ‘blue pill’, then the combined odds are 4:1 times 3:1

is 12:1, which is ample to outweigh the 1:6 odds associated with the low prevalence of

spam (total odds are 2:1, or a spam probability of 0.67, up from 0.40 without the ‘blue

pill’).

The advantage of not having to estimate and manipulate joint probabilities is that

we can handle large numbers of variables. Indeed, the vocabulary of a typical Bayesian

spam filter or text classifier may contain some 10 000 terms.2 So, instead of manually

crafting a small set of ‘features’ deemed relevant or predictive by an expert, we include

a much larger set and let the classifier figure out which features are important, and in

what combinations.

�

It should be noted that by multiplying the odds associated with ‘Viagra’ and ‘blue pill’,

we are implicitly assuming that they are independent pieces of information. This is

obviously not true: if we know that an e-mail contains the phrase ‘blue pill’, we are not

really surprised to find out that it also contains the word ‘Viagra’. In probabilistic terms:

� the probability P (Viagra|blue pill) will be close to 1;

� hence the joint probability P (Viagra,blue pill) will be close to P (blue pill);

� hence the odds of spam associated with the two phrases ‘Viagra’ and ‘blue pill’

will not differ much from the odds associated with ‘blue pill’ on its own.

Put differently, by multiplying the two odds we are counting what is essentially one

piece of information twice. The product odds of 12:1 is almost certainly an overesti-

2In fact, phrases consisting of multiple words are usually decomposed into their constituent words, such

that P (blue pill) is estimated as P (blue)P (pill).
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mate, and the real joint odds may be not more than, say, 5:1.

We appear to have painted ourselves into a corner here. In order to avoid over-

counting we need to take joint occurrences of phrases into account; but this is only

feasible computationally if we define the problem away by assuming them to be inde-

pendent. What we want seems to be closer to a rule-based model such as the following:

1. if the e-mail contains the word ‘Viagra’ then estimate the odds of spam as 4:1;

2. otherwise, if it contains the phrase ‘blue pill’ then estimate the odds of spam as

3:1;

3. otherwise, estimate the odds of spam as 1:6.

The first rule covers all e-mails containing the word ‘Viagra’, regardless of whether they

contain the phrase ‘blue pill’, so no overcounting occurs. The second rule only covers

e-mails containing the phrase ‘blue pill’ but not the word ‘Viagra’, by virtue of the ‘oth-

erwise’ clause. The third rule covers all remaining e-mails: those which neither contain

neither ‘Viagra’ nor ‘blue pill’.

The essence of such rule-based classifiers is that they don’t treat all e-mails in the

same way but work on a case-by-case basis. In each case they only invoke the most

relevant features. Cases can be defined by several nested features:

1. Does the e-mail contain the word ‘Viagra’?

(a) If so: Does the e-mail contain the word ‘blue pill’?

i. If so: estimate the odds of spam as 5:1.

ii. If not: estimate the odds of spam as 4:1.

(b) If not: Does the e-mail contain the word ‘lottery’?

i. If so: estimate the odds of spam as 3:1.

ii. If not: estimate the odds of spam as 1:6.

These four cases are characterised by logical conditions such as ‘the e-mail contains

the word “Viagra” but not the phrase “blue pill” ’. Effective and efficient algorithms

exist for identifying the most predictive feature combinations and organise them as

rules or trees, as we shall see later.

�

We have now seen three practical examples of machine learning in spam e-mail recog-

nition. Machine learners call such a task binary classification, as it involves assigning

objects (e-mails) to one of two classes: spam or ham. This task is achieved by describ-

ing each e-mail in terms of a number of variables or features. In the SpamAssassin
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Learning problem

Features
Domain 

objects

Data Output
Model

Learning 
algorithm

Training data

Task

Figure 3. An overview of how machine learning is used to address a given task. A task (red

box) requires an appropriate mapping – a model – from data described by features to outputs.

Obtaining such a mapping from training data is what constitutes a learning problem (blue box).

example these features were handcrafted by an expert in spam filtering, while in the

Bayesian text classification example we employed a large vocabulary of words. The

question is then how to use the features to distinguish spam from ham. We have to

somehow figure out a connection between the features and the class – machine learn-

ers call such a connection a model – by analysing a training set of e-mails already la-

belled with the correct class.

� In the SpamAssassin example we came up with a linear equation of the form∑n
i=1 wi xi > t , where the xi denote the 0–1 valued or ‘Boolean’ features indicat-

ing whether the i -th test succeeded for the e-mail, wi are the feature weights

learned from the training set, and t is the threshold above which e-mails are clas-

sified as spam.

� In the Bayesian example we used a decision rule that can be written as
∏n

i=0 oi >
1, where oi = P (spam|xi )/P (ham|xi ),1 ≤ i ≤ n, are the odds of spam associated

with each word xi in the vocabulary and o0 = P (spam)/P (ham) are the prior odds,

all of which are estimated from the training set.

� In the rule-based example we built logical conditions that identify subsets of the

data that are sufficiently similar to be labelled in a particular way.

Here we have, then, the main ingredients of machine learning: tasks, models and

features. Figure 3 shows how these ingredients relate. If you compare this figure with

Figure 2, you’ll see how the model has taken centre stage, rather than merely being a set

of parameters of a classifier otherwise defined by the features. We need this flexibility

to incorporate the very wide range of models in use in machine learning. It is worth
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emphasising the distinction between tasks and learning problems: tasks are addressed

by models, whereas learning problems are solved by learning algorithms that produce

models. While the distinction is widely recognised, terminology may vary: for instance,

you may find that other authors use the term ‘learning task’ for what we call a learning

problem.

In summary, one could say that machine learning is concerned with using the right

features to build the right models that achieve the right tasks. I call these ‘ingredients’

to emphasise that they come in many different forms, and need to be chosen and com-

bined carefully to create a successful ‘meal’: what machine learners call an application

(the construction of a model that solves a practical task, by means of machine learn-

ing methods, using data from the task domain). Nobody can be a good chef without a

thorough understanding of the ingredients at his or her disposal, and the same holds

for a machine learning expert. Our main ingredients of tasks, models and features will

be investigated in full detail from Chapter 2 onwards; first we will enjoy a little ‘taster

menu’ when I serve up a range of examples in the next chapter to give you some more

appreciation of these ingredients.

�



CHAPTER 1

The ingredients of machine learning

M
ACHINE LEARNING IS ALL ABOUT using the right features to build the right models that

achieve the right tasks – this is the slogan, visualised in Figure 3 on p.11, with which

we ended the Prologue. In essence, features define a ‘language’ in which we describe

the relevant objects in our domain, be they e-mails or complex organic molecules. We

should not normally have to go back to the domain objects themselves once we have

a suitable feature representation, which is why features play such an important role in

machine learning. We will take a closer look at them in Section 1.3. A task is an abstract

representation of a problem we want to solve regarding those domain objects: the most

common form of these is classifying them into two or more classes, but we shall en-

counter other tasks throughout the book. Many of these tasks can be represented as a

mapping from data points to outputs. This mapping or model is itself produced as the

output of a machine learning algorithm applied to training data; there is a wide variety

of models to choose from, as we shall see in Section 1.2.

We start this chapter by discussing tasks, the problems that can be solved with

machine learning. No matter what variety of machine learning models you may en-

counter, you will find that they are designed to solve one of only a small number of

tasks and use only a few different types of features. One could say that models lend the

machine learning field diversity, but tasks and features give it unity.

13
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1.1 Tasks: the problems that can be solved with machine learning

Spam e-mail recognition was described in the Prologue. It constitutes a binary clas-

sification task, which is easily the most common task in machine learning which fig-

ures heavily throughout the book. One obvious variation is to consider classification

problems with more than two classes. For instance, we may want to distinguish differ-

ent kinds of ham e-mails, e.g., work-related e-mails and private messages. We could

approach this as a combination of two binary classification tasks: the first task is to

distinguish between spam and ham, and the second task is, among ham e-mails, to

distinguish between work-related and private ones. However, some potentially useful

information may get lost this way, as some spam e-mails tend to look like private rather

than work-related messages. For this reason, it is often beneficial to view multi-class

classification as a machine learning task in its own right. This may not seem a big deal:

after all, we still need to learn a model to connect the class to the features. However, in

this more general setting some concepts will need a bit of rethinking: for instance, the

notion of a decision boundary is less obvious when there are more than two classes.

Sometimes it is more natural to abandon the notion of discrete classes altogether

and instead predict a real number. Perhaps it might be useful to have an assessment of

an incoming e-mail’s urgency on a sliding scale. This task is called regression, and es-

sentially involves learning a real-valued function from training examples labelled with

true function values. For example, I might construct such a training set by randomly se-

lecting a number of e-mails from my inbox and labelling them with an urgency score on

a scale of 0 (ignore) to 10 (immediate action required). This typically works by choos-

ing a class of functions (e.g., functions in which the function value depends linearly

on some numerical features) and constructing a function which minimises the differ-

ence between the predicted and true function values. Notice that this is subtly different

from SpamAssassin learning a real-valued spam score, where the training data are la-

belled with classes rather than ‘true’ spam scores. This means that SpamAssassin has

less information to go on, but it also allows us to interpret SpamAssassin’s score as an

assessment of how far it thinks an e-mail is removed from the decision boundary, and

therefore as a measure of confidence in its own prediction. In a regression task the

notion of a decision boundary has no meaning, and so we have to find other ways to

express a models’s confidence in its real-valued predictions.

Both classification and regression assume the availability of a training set of exam-

ples labelled with true classes or function values. Providing the true labels for a data set

is often labour-intensive and expensive. Can we learn to distinguish spam from ham,

or work e-mails from private messages, without a labelled training set? The answer is:

yes, up to a point. The task of grouping data without prior information on the groups is

called clustering. Learning from unlabelled data is called unsupervised learning and is

quite distinct from supervised learning, which requires labelled training data. A typical
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clustering algorithm works by assessing the similarity between instances (the things

we’re trying to cluster, e.g., e-mails) and putting similar instances in the same cluster

and ‘dissimilar’ instances in different clusters.

Example 1.1 (Measuring similarity). If our e-mails are described by word-

occurrence features as in the text classification example, the similarity of e-mails

would be measured in terms of the words they have in common. For instance,

we could take the number of common words in two e-mails and divide it by the

number of words occurring in either e-mail (this measure is called the Jaccard

coefficient). Suppose that one e-mail contains 42 (different) words and another

contains 112 words, and the two e-mails have 23 words in common, then their

similarity would be 23
42+112−23 = 23

130 = 0.18. We can then cluster our e-mails into

groups, such that the average similarity of an e-mail to the other e-mails in its

group is much larger than the average similarity to e-mails from other groups.

While it wouldn’t be realistic to expect that this would result in two nicely sep-

arated clusters corresponding to spam and ham – there’s no magic here – the

clusters may reveal some interesting and useful structure in the data. It may be

possible to identify a particular kind of spam in this way, if that subgroup uses a

vocabulary, or language, not found in other messages.

There are many other patterns that can be learned from data in an unsupervised

way. Association rules are a kind of pattern that are popular in marketing applications,

and the result of such patterns can often be found on online shopping web sites. For in-

stance, when I looked up the book Kernel Methods for Pattern Analysis by John Shawe-

Taylor and Nello Cristianini onwww.amazon.co.uk, I was told that ‘Customers Who

Bought This Item Also Bought’ –

� An Introduction to Support Vector Machines and Other Kernel-based Learning

Methods by Nello Cristianini and John Shawe-Taylor;

� Pattern Recognition and Machine Learning by Christopher Bishop;

� The Elements of Statistical Learning: Data Mining, Inference and Prediction by

Trevor Hastie, Robert Tibshirani and Jerome Friedman;

� Pattern Classification by Richard Duda, Peter Hart and David Stork;

and 34 more suggestions. Such associations are found by data mining algorithms that

zoom in on items that frequently occur together. These algorithms typically work by
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only considering items that occur a minimum number of times (because you wouldn’t

want your suggestions to be based on a single customer that happened to buy these 39

books together!). More interesting associations could be found by considering multiple

items in your shopping basket. There exist many other types of associations that can

be learned and exploited, such as correlations between real-valued variables.

Looking for structure

Like all other machine learning models, patterns are a manifestation of underlying

structure in the data. Sometimes this structure takes the form of a single hidden or la-

tent variable, much like unobservable but nevertheless explanatory quantities in physics,

such as energy. Consider the following matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0

0 2 2 2

0 0 0 1

1 2 3 2

1 0 1 1

0 2 2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Imagine these represent ratings by six different people (in rows), on a scale of 0 to 3, of

four different films – say The Shawshank Redemption, The Usual Suspects, The Godfa-

ther, The Big Lebowski, (in columns, from left to right). The Godfather seems to be the

most popular of the four with an average rating of 1.5, and The Shawshank Redemption

is the least appreciated with an average rating of 0.5. Can you see any structure in this

matrix?

If you are inclined to say no, try to look for columns or rows that are combinations

of other columns or rows. For instance, the third column turns out to be the sum of the

first and second columns. Similarly, the fourth row is the sum of the first and second

rows. What this means is that the fourth person combines the ratings of the first and

second person. Similarly, The Godfather’s ratings are the sum of the ratings of the first

two films. This is made more explicit by writing the matrix as the following product:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0

0 2 2 2

0 0 0 1

1 2 3 2

1 0 1 1

0 2 2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎝

1 0 0

0 2 0

0 0 1

⎞
⎟⎠ ×

⎛
⎜⎝

1 0 1 0

0 1 1 1

0 0 0 1

⎞
⎟⎠

You might think I just made matters worse – instead of one matrix we now have three!

However, notice that the first and third matrix on the right-hand side are now Boolean,
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and the middle one is diagonal (all off-diagonal entries are zero). Moreover, these ma-

trices have a very natural interpretation in terms of film genres. The right-most matrix

associates films (in columns) with genres (in rows): The Shawshank Redemption and

The Usual Suspects belong to two different genres, say drama and crime, The Godfather

belongs to both, and The Big Lebowski is a crime film and also introduces a new genre

(say comedy). The tall, 6-by-3 matrix then expresses people’s preferences in terms of

genres: the first, fourth and fifth person like drama, the second, fourth and fifth person

like crime films, and the third, fifth and sixth person like comedies. Finally, the mid-

dle matrix states that the crime genre is twice as important as the other two genres in

terms of determining people’s preferences.

Methods for discovering hidden variables such as film genres really come into their

own when the number of values of the hidden variable (here: the number of genres)

is much smaller than the number of rows and columns of the original matrix. For in-

stance, at the time of writing www.imdb.com lists about 630 000 rated films with 4

million people voting, but only 27 film categories (including the ones above). While it

would be naive to assume that film ratings can be completely broken down by genres –

genre boundaries are often diffuse, and someone may only like comedies made by the

Coen brothers – this kind of �matrix decomposition can often reveal useful hidden

structure. It will be further examined in Chapter 10.

This is a good moment to summarise some terminology that we will be using. We

have already seen the distinction between supervised learning from labelled data and

unsupervised learning from unlabelled data. We can similarly draw a distinction be-

tween whether the model output involves the target variable or not: we call it a pre-

dictive model if it does, and a descriptive model if it does not. This leads to the four

different machine learning settings summarised in Table 1.1.

� The most common setting is supervised learning of predictive models – in fact,

this is what people commonly mean when they refer to supervised learning. Typ-

ical tasks are classification and regression.

� It is also possible to use labelled training data to build a descriptive model that

is not primarily intended to predict the target variable, but instead identifies,

say, subsets of the data that behave differently with respect to the target variable.

This example of supervised learning of a descriptive model is called �subgroup

discovery; we will take a closer look at it in Section 6.3.

� Descriptive models can naturally be learned in an unsupervised setting, and we

have just seen a few examples of that (clustering, association rule discovery and

matrix decomposition). This is often the implied setting when people talk about

unsupervised learning.

� A typical example of unsupervised learning of a predictive model occurs when
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Predictive model Descriptive model

Supervised learning classification, regression subgroup discovery

Unsupervised learning predictive clustering descriptive clustering,

association rule discovery

Table 1.1. An overview of different machine learning settings. The rows refer to whether the

training data is labelled with a target variable, while the columns indicate whether the models

learned are used to predict a target variable or rather describe the given data.

we cluster data with the intention of using the clusters to assign class labels to

new data. We will call this predictive clustering to distinguish it from the previ-

ous, descriptive form of clustering.

Although we will not cover it in this book, it is worth pointing out a fifth setting of semi-

supervised learning of predictive models. In many problem domains data is cheap,

but labelled data is expensive. For example, in web page classification you have the

whole world-wide web at your disposal, but constructing a labelled training set is a

painstaking process. One possible approach in semi-supervised learning is to use a

small labelled training set to build an initial model, which is then refined using the

unlabelled data. For example, we could use the initial model to make predictions on

the unlabelled data, and use the most confident predictions as new training data, after

which we retrain the model on this enlarged training set.

Evaluating performance on a task

An important thing to keep in mind with all these machine learning problems is that

they don’t have a ‘correct’ answer. This is different from many other problems in com-

puter science that you might be familiar with. For instance, if you sort the entries in

your address book alphabetically on last name, there is only one correct result (unless

two people have the same last name, in which case you can use some other field as

tie-breaker, such as first name or age). This is not to say that there is only one way of

achieving that result – on the contrary, there is a wide range of sorting algorithms avail-

able: insertion sort, bubblesort, quicksort, to name but a few. If we were to compare

the performance of these algorithms, it would be in terms of how fast they are, and

how much data they could handle: e.g., we could test this experimentally on real data,

or analyse it using computational complexity theory. However, what we wouldn’t do is

compare different algorithms with respect to the correctness of the result, because an

algorithm that isn’t guaranteed to produce a sorted list every time is useless as a sorting

algorithm.

Things are different in machine learning (and not just in machine learning: see
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Background 1.1). We can safely assume that the perfect spam e-mail filter doesn’t exist

– if it did, spammers would immediately ‘reverse engineer’ it to find out ways to trick

the spam filter into thinking a spam e-mail is actually ham. In many cases the data is

‘noisy’ – examples may be mislabelled, or features may contain errors – in which case it

would be detrimental to try too hard to find a model that correctly classifies the training

data, because it would lead to overfitting, and hence wouldn’t generalise to new data.

In some cases the features used to describe the data only give an indication of what

their class might be, but don’t contain enough ‘signal’ to predict the class perfectly. For

these and other reasons, machine learners take performance evaluation of learning

algorithms very seriously, which is why it will play a prominent role in this book. We

need to have some idea of how well an algorithm is expected to perform on new data,

not in terms of runtime or memory usage – although this can be an issue too – but in

terms of classification performance (if our task is a classification task).

Suppose we want to find out how well our newly trained spam filter does. One thing

we can do is count the number of correctly classified e-mails, both spam and ham, and

divide that by the total number of examples to get a proportion which is called the ac-

curacy of the classifier. However, this doesn’t indicate whether overfitting is occurring.

A better idea would be to use only 90% (say) of the data for training, and the remaining

10% as a test set. If overfitting occurs, the test set performance will be considerably

lower than the training set performance. However, even if we select the test instances

randomly from the data, every once in a while we may get lucky, if most of the test in-

stances are similar to training instances – or unlucky, if the test instances happen to be

very non-typical or noisy. In practice this train–test split is therefore repeated in a pro-

cess called �cross-validation, further discussed in Chapter 12. This works as follows:

we randomly divide the data in ten parts of equal size, and use nine parts for training

and one part for testing. We do this ten times, using each part once for testing. At the

end, we compute the average test set performance (and usually also its standard devi-

ation, which is useful to determine whether small differences in average performance

of different learning algorithms are meaningful). Cross-validation can also be applied

to other supervised learning problems, but unsupervised learning methods typically

need to be evaluated differently.

In Chapters 2 and 3 we will take a much closer look at the various tasks that can be

approached using machine learning methods. In each case we will define the task and

look at different variants. We will pay particular attention to evaluating performance of

models learned to solve those tasks, because this will give us considerable additional

insight into the nature of the tasks.
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Long before machine learning came into existence, philosophers knew that gen-

eralising from particular cases to general rules is not a well-posed problem with

well-defined solutions. Such inference by generalisation is called induction and

is to be contrasted with deduction, which is the kind of reasoning that applies to

problems with well-defined correct solutions. There are many versions of this so-

called problem of induction. One version is due to the eighteenth-century Scot-

tish philosopher David Hume, who claimed that the only justification for induc-

tion is itself inductive: since it appears to work for certain inductive problems, it

is expected to work for all inductive problems. This doesn’t just say that induc-

tion cannot be deductively justified but that its justification is circular, which is

much worse.

A related problem is stated by the no free lunch theorem, which states that no

learning algorithm can outperform another when evaluated over all possible

classification problems, and thus the performance of any learning algorithm,

over the set of all possible learning problems, is no better than random guess-

ing. Consider, for example, the ‘guess the next number’ questions popular in

psychological tests: what comes after 1, 2, 4, 8, ...? If all number sequences are

equally likely, then there is no hope that we can improve – on average – on ran-

dom guessing (I personally always answer ‘42’ to such questions). Of course,

some sequences are very much more likely than others, at least in the world of

psychological tests. Likewise, the distribution of learning problems in the real

world is highly non-uniform. The way to escape the curse of the no free lunch

theorem is to find out more about this distribution and exploit this knowledge in

our choice of learning algorithm.

Background 1.1. Problems of induction and free lunches.

1.2 Models: the output of machine learning

Models form the central concept in machine learning as they are what is being learned

from the data, in order to solve a given task. There is a considerable – not to say be-

wildering – range of machine learning models to choose from. One reason for this is

the ubiquity of the tasks that machine learning aims to solve: classification, regres-

sion, clustering, association discovery, to name but a few. Examples of each of these

tasks can be found in virtually every branch of science and engineering. Mathemati-

cians, engineers, psychologists, computer scientists and many others have discovered

– and sometimes rediscovered – ways to solve these tasks. They have all brought their
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specific background to bear, and consequently the principles underlying these mod-

els are also diverse. My personal view is that this diversity is a good thing as it helps

to make machine learning the powerful and exciting discipline it is. It doesn’t, how-

ever, make the task of writing a machine learning book any easier! Luckily, a few com-

mon themes can be observed, which allow me to discuss machine learning models

in a somewhat more systematic way. I will discuss three groups of models: geometric

models, probabilistic models, and logical models. These groupings are not meant to be

mutually exclusive, and sometimes a particular kind of model has, for instance, both a

geometric and a probabilistic interpretation. Nevertheless, it provides a good starting

point for our purposes.

Geometric models

The instance space is the set of all possible or describable instances, whether they are

present in our data set or not. Usually this set has some geometric structure. For in-

stance, if all features are numerical, then we can use each feature as a coordinate in

a Cartesian coordinate system. A geometric model is constructed directly in instance

space, using geometric concepts such as lines, planes and distances. For instance, the

linear classifier depicted in Figure 1 on p.5 is a geometric classifier. One main advan-

tage of geometric classifiers is that they are easy to visualise, as long as we keep to

two or three dimensions. It is important to keep in mind, though, that a Cartesian

instance space has as many coordinates as there are features, which can be tens, hun-

dreds, thousands, or even more. Such high-dimensional spaces are hard to imagine but

are nevertheless very common in machine learning. Geometric concepts that poten-

tially apply to high-dimensional spaces are usually prefixed with ‘hyper-’: for instance,

a decision boundary in an unspecified number of dimensions is called a hyperplane.

If there exists a linear decision boundary separating the two classes, we say that the

data is linearly separable. As we have seen, a linear decision boundary is defined by the

equation w ·x= t , where w is a vector perpendicular to the decision boundary, x points

to an arbitrary point on the decision boundary, and t is the decision threshold. A good

way to think of the vector w is as pointing from the ‘centre of mass’ of the negative

examples, n, to the centre of mass of the positives p. In other words, w is proportional

(or equal) to p−n. One way to calculate these centres of mass is by averaging. For

instance, if P is a set of n positive examples, then we can define p = 1
n

∑
x∈P x, and

similarly for n. By setting the decision threshold appropriately, we can intersect the line

from n to p half-way (Figure 1.1). We will call this the basic linear classifier in this book.1

It has the advantage of simplicity, being defined in terms of addition, subtraction and

rescaling of examples only (in other words, w is a linear combination of the examples).

Indeed, under certain additional assumptions about the data it is the best thing we

1It is a simplified version of linear discriminants.
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Figure 1.1. The basic linear classifier constructs a decision boundary by half-way intersecting

the line between the positive and negative centres of mass. It is described by the equation w ·x=
t , with w= p−n; the decision threshold can be found by noting that (p+n)/2 is on the decision

boundary, and hence t = (p−n) · (p+n)/2 = (||p||2 − ||n||2)/2, where ||x|| denotes the length of

vector x.

can hope to do, as we shall see later. However, if those assumptions do not hold, the

basic linear classifier can perform poorly – for instance, note that it may not perfectly

separate the positives from the negatives, even if the data is linearly separable.

Because data is usually noisy, linear separability doesn’t occur very often in prac-

tice, unless the data is very sparse, as in text classification. Recall that we used a large

vocabulary, say 10 000 words, each word corresponding to a Boolean feature indicat-

ing whether or not that word occurs in the document. This means that the instance

space has 10 000 dimensions, but for any one document no more than a small per-

centage of the features will be non-zero. As a result there is much ‘empty space’ be-

tween instances, which increases the possibility of linear separability. However, be-

cause linearly separable data doesn’t uniquely define a decision boundary, we are now

faced with a problem: which of the infinitely many decision boundaries should we

choose? One natural option is to prefer large margin classifiers, where the margin of a

linear classifier is the distance between the decision boundary and the closest instance.

�Support vector machines, discussed in Chapter 7, are a powerful kind of linear clas-

sifier that find a decision boundary whose margin is as large as possible (Figure 1.2).

Geometric concepts, in particular linear transformations, can be very helpful to un-

derstand the similarities and differences between machine learning methods

(Background 1.2). For instance, we would expect most if not all learning algorithms
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Figure 1.2. The decision boundary learned by a support vector machine from the linearly sep-

arable data from Figure 1. The decision boundary maximises the margin, which is indicated by

the dotted lines. The circled data points are the support vectors.

to be translation-invariant, i.e., insensitive to where we put the origin of our coordi-

nate system. Some algorithms may also be rotation-invariant, e.g., linear classifiers or

support vector machines; but many others aren’t, including Bayesian classifiers. Simi-

larly, some algorithms may be sensitive to non-uniform scaling.

A very useful geometric concept in machine learning is the notion of distance. If

the distance between two instances is small then the instances are similar in terms of

their feature values, and so nearby instances would be expected to receive the same

classification or belong to the same cluster. In a Cartesian coordinate system, distance

can be measured by Euclidean distance, which is the square root of the sum of the

squared distances along each coordinate:2
√∑d

i=1(xi − yi )2. A very simple distance-

based classifier works as follows: to classify a new instance, we retrieve from memory

the most similar training instance (i.e., the training instance with smallest Euclidean

distance from the instance to be classified), and simply assign that training instance’s

class. This classifier is known as the nearest-neighbour classifier. Endless variations

on this simple yet powerful theme exist: we can retrieve the k most similar training

instances and take a vote (k-nearest neighbour); we can weight each neighbour’s vote

inversely to its distance; we can apply the same idea to regression tasks by averaging

the training instances’ function value; and so on. What they all have in common is that

predictions are local in the sense that they are based on only a few training instances,

2This can be expressed in vector notation as ||x − y|| = √(x−y) · (x−y) = √x ·x−2x ·y+y ·y =√
||x||2−2||x||||y||cosθ+||y||2, where θ is the angle between x and y.
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Transformations in d-dimensional Cartesian coordinate systems can be conve-

niently represented by means of matrix notation. Let x be a d-vector represent-

ing a data point, then x+ t is the resulting point after translating over t (another

d-vector). Translating a set of points over t can be equivalently understood as

translating the origin over −t. Using homogeneous coordinates – the addition of

an extra dimension set to 1 – translations can be expressed by matrix multiplica-

tion: e.g., in two dimensions we have

x◦ =

⎛
⎜⎝

1

x1

x2

⎞
⎟⎠ T=

⎛
⎜⎝

1 0 0

t1 1 0

t2 0 1

⎞
⎟⎠ Tx◦ =

⎛
⎜⎝

1

x1+ t1

x2+ t2

⎞
⎟⎠

A rotation is defined by any d-by-d matrix D whose transpose is its inverse (which

means it is orthogonal) and whose determinant is 1. In two dimensions a rotation

matrix can be written as R=
(

cosθ sinθ

−sinθ cosθ

)
, representing a clockwise rotation

over angle θ about the origin. For instance,

(
0 1

−1 0

)
is a 90 degrees clockwise

rotation.

A scaling is defined by a diagonal matrix; in two dimensions S =
(

s1 0

0 s2

)
. A

uniform scaling applies the same scaling factor s in all dimensions and can be

written as sI, where I is the identity matrix. Notice that a uniform scaling with

scaling factor −1 is a rotation (over 180 degrees in the two-dimensional case).

A common scenario which utilises all these transformations is the following.

Given an n-by-d matrix X representing n data points in d-dimensional space,

we first calculate the centre of mass or mean vector μ by averaging each column.

We then zero-centre the data set by subtracting −μ from each row, which corre-

sponds to a translation. Next, we rotate the data such that as much variance (a

measure of the data’s ‘spread’ in a certain direction) as possible is aligned with

our coordinate axes; this can be achieved by a matrix transformation known as

�principal component analysis, about which you will learn more in Chapter 10.

Finally, we scale the data to unit variance along each coordinate.

Background 1.2. Linear transformations.

rather than being derived from a global model built from the entire data set.

There is a nice relationship between Euclidean distance and the mean of a set of
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points: there is no other point which has smaller total squared Euclidean distance to

the given points (see Theorem 8.1 on p.238 for a proof of this). Consequently, we can

use the mean of a set of nearby points as a representative exemplar for those points.

Suppose we want to cluster our data into K clusters, and we have an initial guess of

how the data should be clustered. We then calculate the means of each initial clus-

ter, and reassign each point to the nearest cluster mean. Unless our initial guess was

a lucky one, this will have changed some of the clusters, so we repeat these two steps

(calculating the cluster means and reassigning points to clusters) until no change oc-

curs. This clustering algorithm, which is called �K -means and is further discussed

in Chapter 8, is very widely used to solve a range of clustering tasks. It remains to be

decided how we construct our initial guess. This is usually done randomly: either by

randomly partitioning the data set into K ‘clusters’ or by randomly guessing K ‘cluster

centres’. The fact that these initial ‘clusters’ or ‘cluster centres’ will bear little resem-

blance to the actual data is not a problem, as this will quickly be rectified by running

the algorithm for a number of iterations.

To summarise, geometric notions such as planes, translations and rotations, and

distance are very useful in machine learning as they allow us to understand many key

concepts in intuitive ways. Geometric models exploit these intuitions and are simple,

powerful and allow many variations with little effort. For instance, instead of using

Euclidean distance, which can be sensitive to outliers, other distances can be used such

as Manhattan distance, which sums the distances along each coordinate:
∑d

i=1 |xi−yi |.

Probabilistic models

The second type of models are probabilistic in nature, like the Bayesian classifier we

considered earlier. Many of these models are based around the following idea. Let X

denote the variables we know about, e.g., our instance’s feature values; and let Y de-

note the target variables we’re interested in, e.g., the instance’s class. The key question

in machine learning is how to model the relationship between X and Y . The statisti-

cian’s approach is to assume that there is some underlying random process that gen-

erates the values for these variables, according to a well-defined but unknown prob-

ability distribution. We want to use the data to find out more about this distribution.

Before we look into that, let’s consider how we could use that distribution once we have

learned it.

Since X is known for a particular instance but Y may not be, we are particularly in-

terested in the conditional probabilities P (Y |X ). For instance, Y could indicate whether

the e-mail is spam, and X could indicate whether the e-mail contains the words ‘Via-

gra’ and ‘lottery’. The probability of interest is then P (Y |Viagra, lottery), with Viagra

and lottery two Boolean variables which together constitute the feature vector X . For

a particular e-mail we know the feature values and so we might write P (Y |Viagra =
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Viagra lottery P (Y = spam|Viagra, lottery) P (Y = ham|Viagra, lottery)

0 0 0.31 0.69

0 1 0.65 0.35

1 0 0.80 0.20

1 1 0.40 0.60

Table 1.2. An example posterior distribution. ‘Viagra’ and ‘lottery’ are two Boolean features; Y

is the class variable, with values ‘spam’ and ‘ham’. In each row the most likely class is indicated

in bold.

1, lottery = 0) if the e-mail contains the word ‘Viagra’ but not the word ‘lottery’. This is

called a posterior probability because it is used after the features X are observed.

Table 1.2 shows an example of how these probabilities might be distributed. From

this distribution you can conclude that, if an e-mail doesn’t contain the word ‘Viagra’,

then observing the word ‘lottery’ increases the probability of the e-mail being spam

from 0.31 to 0.65; but if the e-mail does contain the word ‘Viagra’, then observing the

word ‘lottery’ as well decreases the spam probability from 0.80 to 0.40. Even though

this example table is small, it will grow unfeasibly large very quickly (with n Boolean

variables 2n cases have to be distinguished). We therefore don’t normally have access

to the full joint distribution and have to approximate it using additional assumptions,

as we will see below.

Assuming that X and Y are the only variables we know and care about, the poste-

rior distribution P (Y |X ) helps us to answer many questions of interest. For instance, to

classify a new e-mail we determine whether the words ‘Viagra’ and ‘lottery’ occur in it,

look up the corresponding probability P (Y = spam|Viagra, lottery), and predict spam if

this probability exceeds 0.5 and ham otherwise. Such a recipe to predict a value of Y

on the basis of the values of X and the posterior distribution P (Y |X ) is called a decision

rule. We can do this even without knowing all the values of X , as the following example

shows.

Example 1.2 (Missing values). Suppose we skimmed an e-mail and noticed that

it contains the word ‘lottery’ but we haven’t looked closely enough to determine

whether it uses the word ‘Viagra’. This means that we don’t know whether to use

the second or the fourth row in Table 1.2 to make a prediction. This is a problem,

as we would predict spam if the e-mail contained the word ‘Viagra’ (second row)

and ham if it didn’t (fourth row).

The solution is to average these two rows, using the probability of ‘Viagra’
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occurring in any e-mail (spam or not):

P (Y |lottery)=P (Y |Viagra= 0, lottery)P (Viagra= 0)

+P (Y |Viagra= 1, lottery)P (Viagra= 1)

For instance, suppose for the sake of argument that one in ten e-mails contain

the word ‘Viagra’, then P (Viagra = 1) = 0.10 and P (Viagra = 0) = 0.90. Using the

above formula, we obtain P (Y = spam|lottery= 1)= 0.65 ·0.90+0.40 ·0.10= 0.625

and P (Y = ham|lottery = 1) = 0.35 ·0.90+0.60 ·0.10 = 0.375. Because the occur-

rence of ‘Viagra’ in any e-mail is relatively rare, the resulting distribution deviates

only a little from the second row in Table 1.2.

As a matter of fact, statisticians work very often with different conditional prob-

abilities, given by the likelihood function P (X |Y ).3 This seems counter-intuitive at

first: why would we be interested in the probability of an event we know has occurred

(X ), conditioned on something we don’t know anything about (Y )? I like to think of

these as thought experiments: if somebody were to send me a spam e-mail, how likely

would it be that it contains exactly the words of the e-mail I’m looking at? And how

likely if it were a ham e-mail instead? ‘Not very likely at all in either case’, you might

think, and you would be right: with so many words to choose from, the probability

of any particular combination of words would be very small indeed. What really mat-

ters is not the magnitude of these likelihoods, but their ratio: how much more likely

is it to observe this combination of words in a spam e-mail than it is in a non-spam

e-mail. For instance, suppose that for a particular e-mail described by X we have

P (X |Y = spam)= 3.5 ·10−5 and P (X |Y = ham)= 7.4 ·10−6, then observing X in a spam

e-mail is nearly five times more likely than it is in a ham e-mail. This suggests the

following decision rule: predict spam if the likelihood ratio is larger than 1 and ham

otherwise.

So which one should we use: posterior probabilities or likelihoods? As it turns out,

we can easily transform one into the other using Bayes’ rule, a simple property of con-

ditional probabilities which states that

P (Y |X )= P (X |Y )P (Y )

P (X )

Here, P (Y ) is the prior probability, which in the case of classification tells me how likely

each of the classes is a priori, i.e., before I have observed the data X . P (X ) is the prob-

3It is called the likelihood function rather than the ‘likelihood distribution’ because, for fixed X , P (X |Y )

is a mapping from Y to probabilities, but these don’t sum to 1 and therefore don’t establish a probability

distribution over Y .
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ability of the data, which is independent of Y and in most cases can be ignored (or

inferred in a normalisation step, as it is equal to
∑

Y P (X |Y )P (Y )). The first decision

rule above suggested that we predict the class with maximum posterior probability,

which using Bayes’ rule can be written in terms of the likelihood function:

yMAP = argmax
Y

P (Y |X )= argmax
Y

P (X |Y )P (Y )

P (X )
= argmax

Y
P (X |Y )P (Y )

This is usually called the maximum a posteriori (MAP) decision rule. Now, if we assume

a uniform prior distribution (i.e., P (Y ) the same for every value of Y ) this reduces to

the maximum likelihood (ML) decision rule:

yML = argmax
Y

P (X |Y )

A useful rule of thumb is: use likelihoods if you want to ignore the prior distribution or

assume it uniform, and posterior probabilities otherwise.

If we have only two classes it is convenient to work with ratios of posterior proba-

bilities or likelihood ratios. If we want to know how much the data favours one of two

classes, we can calculate the posterior odds: e.g.,

P (Y = spam|X )

P (Y = ham|X )
= P (X |Y = spam)

P (X |Y = ham)

P (Y = spam)

P (Y = ham)

In words: the posterior odds are the product of the likelihood ratio and the prior odds.

If the odds are larger than 1 we conclude that the class in the enumerator is the more

likely of the two; if it is smaller than 1 we take the class in the denominator instead. In

very many cases the prior odds is a simple constant factor that can be manually set,

estimated from the data, or optimised to maximise performance on a test set.

Example 1.3 (Posterior odds). Using the data from Table 1.2, and assuming a

uniform prior distribution, we arrive at the following posterior odds:

P (Y = spam|Viagra= 0, lottery= 0)

P (Y = ham|Viagra= 0, lottery= 0)
= 0.31

0.69
= 0.45

P (Y = spam|Viagra= 1, lottery= 1)

P (Y = ham|Viagra= 1, lottery= 1)
= 0.40

0.60
= 0.67

P (Y = spam|Viagra= 0, lottery= 1)

P (Y = ham|Viagra= 0, lottery= 1)
= 0.65

0.35
= 1.9

P (Y = spam|Viagra= 1, lottery= 0)

P (Y = ham|Viagra= 1, lottery= 0)
= 0.80

0.20
= 4.0

Using a MAP decision rule (which in this case is the same as the ML decision rule,

since we assumed a uniform prior) we predict ham in the top two cases and spam
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Y P (Viagra= 1|Y ) P (Viagra= 0|Y )

spam 0.40 0.60

ham 0.12 0.88

Y P (lottery= 1|Y ) P (lottery= 0|Y )

spam 0.21 0.79

ham 0.13 0.87

Table 1.3. Example marginal likelihoods.

in the bottom two. Given that the full posterior distribution is all there is to know

about the domain in a statistical sense, these predictions are the best we can do:

they are Bayes-optimal.

It is clear from the above analysis that the likelihood function plays an important

role in statistical machine learning. It establishes what is called a generative model: a

probabilistic model from which we can sample values of all variables involved. Imag-

ine a box with two buttons labelled ‘ham’ and ‘spam’. Pressing the ‘ham’ button gener-

ates a random e-mail according to P (X |Y = ham); pressing the ‘spam’ button generates

a random e-mail according to P (X |Y = spam). The question now is what we put inside

the box. Let’s try a model that is so simplistic it’s almost laughable. Assuming a vo-

cabulary of 10 000 words, you have two bags with 10 000 coins each, one for each word

in the vocabulary. In order to generate a random e-mail, you take the appropriate bag

depending on which button was pressed, and toss each of the 10 000 coins in that bag

to decide which words should go in the e-mail (say heads is in and tails is out).

In statistical terms, each coin – which isn’t necessarily fair – represents a parameter

of the model, so we have 20 000 parameters. If ‘Viagra’ is a word in the vocabulary,

then the coin labelled ‘Viagra’ in the bag labelled ‘spam’ represents P (Viagra|Y = spam)

and the coin labelled ‘Viagra’ in the bag labelled ‘ham’ represents P (Viagra|Y = ham).

Together, these two coins represent the left table in Table 1.3. Notice that by using

different coins for each word we have tacitly assumed that likelihoods of individual

words are independent within the same class, which – if true – allows us to decompose

the joint likelihood into a product of marginal likelihoods:

P (Viagra, lottery|Y )= P (Viagra|Y )P (lottery|Y )

Effectively, this independence assumption means that knowing whether one word oc-

curs in the e-mail doesn’t tell you anything about the likelihood of other words. The

probabilities on the right are called marginal likelihoods because they are obtained

by ‘marginalising’ some of the variables in the joint distribution: e.g., P (Viagra|Y ) =∑
lottery P (Viagra, lottery|Y ).
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Example 1.4 (Using marginal likelihoods). Assuming these estimates come out

as in Table 1.3, we can then calculate likelihood ratios (the previously calculated

odds from the full posterior distribution are shown in brackets):

P (Viagra= 0|Y = spam)

P (Viagra= 0|Y = ham)

P (lottery= 0|Y = spam)

P (lottery= 0|Y = ham)
= 0.60

0.88

0.79

0.87
= 0.62 (0.45)

P (Viagra= 0|Y = spam)

P (Viagra= 0|Y = ham)

P (lottery= 1|Y = spam)

P (lottery= 1|Y = ham)
= 0.60

0.88

0.21

0.13
= 1.1 (1.9)

P (Viagra= 1|Y = spam)

P (Viagra= 1|Y = ham)

P (lottery= 0|Y = spam)

P (lottery= 0|Y = ham)
= 0.40

0.12

0.79

0.87
= 3.0 (4.0)

P (Viagra= 1|Y = spam)

P (Viagra= 1|Y = ham)

P (lottery= 1|Y = spam)

P (lottery= 1|Y = ham)
= 0.40

0.12

0.21

0.13
= 5.4 (0.67)

We see that, using a maximum likelihood decision rule, our very simple model ar-

rives at the Bayes-optimal prediction in the first three cases, but not in the fourth

(‘Viagra’ and ‘lottery’ both present), where the marginal likelihoods are actually

very misleading. A possible explanation is that these terms are very unlikely to

occur together in any e-mail, but slightly more likely in ham than spam – for in-

stance, I might be making exactly this point in an e-mail!

One might call the independence assumption that allows us to decompose joint

likelihoods into a product of marginal likelihoods ‘naive’ – which is exactly what ma-

chine learners do when they refer to this simplified Bayesian classifier as naive Bayes.

This shouldn’t be taken as a derogatory term – on the contrary, it illustrates a very im-

portant guideline in machine learning: everything should be made as simple as possible,

but not simpler.4 In our statistical context, this rule boils down to using the simplest

generative model that solves our task. For instance, we may decide to stick to naive

Bayes on the grounds that the cases in which the marginal probabilities are misleading

are very unlikely to occur in reality and therefore will be difficult to learn from data.

We now have some idea what a probabilistic model looks like, but how do we learn

such a model? In many cases this will be a matter of estimating the model parameters

from data, which is usually achieved by straightforward counting. For example, in the

coin toss model of spam recognition we had two coins for every word wi in our vocab-

4This formulation is often attributed to Einstein, although the source is unclear. Other rules in the same

spirit include ‘Entities should not be multiplied unnecessarily’ (called Occam’s razor, after William of Ock-

ham); ‘We are to admit no more causes of natural things than such as are both true and sufficient to explain

their appearances’ (Isaac Newton); and ‘Scientists must use the simplest means of arriving at their results

and exclude everything not perceived by the senses’ (Ernst Mach). Whether any of these rules are more than

methodological rules of thumbs and point to some fundamental property of nature is heavily debated.
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Figure 1.3. (top) Visualisation of two marginal likelihoods as estimated from a small data set.

The colours indicate whether the likelihood points to spam or ham. (bottom) Combining the

two marginal likelihoods gives a pattern not unlike that of a Scottish tartan. The colour of a

particular cell is a result of the colours in the corresponding row and column.

ulary, one of which is to be tossed if we are generating a spam e-mail and the other for

ham e-mails. Let’s say that the spam coin comes up heads with probability θ⊕i and the

ham coin with probability θ�i , then these parameters characterise all the likelihoods:

P (wi = 1|Y = spam)= θ⊕i P (wi = 0|Y = spam)= 1−θ⊕i
P (wi = 1|Y = ham)= θ�i P (wi = 0|Y = ham)= 1−θ�i

In order to estimate the parameters θ±i we need a training set of e-mails labelled spam

or ham. We take the spam e-mails and count how many of them wi occurs in: dividing

by the total number of spam e-mails gives us an estimate of θ⊕i . Repeating this for the

ham e-mails results in an estimate of θ�i . And that’s all there is to it!5

5Sometimes we need to slightly adapt the raw counts for very frequent or very infrequent words, as we

shall see in Section 2.3.
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Figure 1.4. (left) A feature tree combining two Boolean features. Each internal node or split is

labelled with a feature, and each edge emanating from a split is labelled with a feature value.

Each leaf therefore corresponds to a unique combination of feature values. Also indicated in

each leaf is the class distribution derived from the training set. (right) A feature tree partitions

the instance space into rectangular regions, one for each leaf. We can clearly see that the majority

of ham lives in the lower left-hand corner.

Figure 1.3 visualises this for a variant of the naive Bayes classifier discussed above.

In this variant, we record the number of times a particular word occurs in an e-mail,

rather than just whether it occurs or not. We thus need a parameter pi j± for each likeli-

hood P (wi = j |Y =±), where j = 0,1,2, . . .. For example, we see that there are two spam

e-mails in which ‘lottery’ occurs twice, and one ham e-mail in which ‘Peter’ occurs five

times. Combining the two sets of marginal likelihoods, we get the tartan-like pattern of

Figure 1.3 (bottom), which is why I like to call naive Bayes the ‘Scottish classifier’. This

is a visual reminder of the fact that a multivariate naive Bayes model decomposes into

a bunch of univariate ones. We will return to this issue of decomposition several times

in the book.

Logical models

The third type of model we distinguish is more algorithmic in nature, drawing inspira-

tion from computer science and engineering. I call this type ‘logical’ because models

of this type can be easily translated into rules that are understandable by humans, such

as ·if Viagra= 1 then Class=Y= spam·. Such rules are easily organised in a tree struc-

ture, such as the one in Figure 1.4, which I will call a feature tree. The idea of such

a tree is that features are used to iteratively partition the instance space. The leaves

of the tree therefore correspond to rectangular areas in the instance space (or hyper-

rectangles, more generally) which we will call instance space segments, or segments for

short. Depending on the task we are solving, we can then label the leaves with a class, a
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Figure 1.5. (left) A complete feature tree built from two Boolean features. (right) The corre-

sponding instance space partition is the finest partition that can be achieved with those two

features.

probability, a real value, and so on. Feature trees whose leaves are labelled with classes

are commonly called decision trees.

Example 1.5 (Labelling a feature tree). The leaves of the tree in Figure 1.4 could

be labelled, from left to right, as ham – spam – spam, employing a simple decision

rule called majority class. Alternatively, we could label them with the proportion

of spam e-mail occurring in each leaf: from left to right, 1/3, 2/3, and 4/5. Or, if

our task was a regression task, we could label the leaves with predicted real values

or even linear functions of some other, real-valued features.

Feature trees are very versatile and will play a major role in this book. Even models

that do not appear tree-based at first sight can be understood as being built on a fea-

ture tree. Consider, for instance, the naive Bayes classifier discussed previously. Since

it employs marginal likelihoods such as the ones in Table 1.3 on p.29, it partitions the

instance space in as many regions as there are combinations of feature values. This

means that it can be thought of as employing a complete feature tree, which contains

all features, one at each level of the tree (Figure 1.5). Incidentally, notice that the right-

most leaf is the one where naive Bayes made a wrong prediction. Since this leaf covers

only a single example, there is a danger that this tree is overfitting the data and that

the previous tree is a better model. Decision tree learners often employ pruning tech-

niques which delete splits such as these.

A feature list is a binary feature tree which always branches in the same direction,

either left or right. The tree in Figure 1.4 is a left-branching feature list. Such feature
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lists can be written as nested if–then–else statements that will be familiar to anyone

with a bit of programming experience. For instance, if we were to label the leaves in

Figure 1.4 by majority class we obtain the following decision list:

·if Viagra= 1 then Class=Y= spam·
·else if lottery= 1 then Class=Y= spam·
·else Class=Y= ham·

Logical models often have different, equivalent formulations. For instance, two alter-

native formulations for this model are

·if Viagra= 1 ∨ lottery= 1 then Class=Y= spam·
·else Class=Y= ham·

·if Viagra= 0 ∧ lottery= 0 then Class=Y= ham·
·else Class=Y= spam·

The first of these alternative formulations combines the two rules in the original de-

cision list by means of disjunction (‘or’), denoted by ∨ . This selects a single non-

rectangular area in instance space. The second model formulates a conjunctive condi-

tion (‘and’, denoted by ∧ ) for the opposite class (ham) and declares everything else as

spam.

We can also represent the same model as un-nested rules:

·if Viagra= 1 then Class=Y= spam·
·if Viagra= 0 ∧ lottery= 1 then Class=Y= spam·
·if Viagra= 0 ∧ lottery= 0 then Class=Y= ham·

Here, every path from root to a leaf is translated into a rule. As a result, although rules

from the same sub-tree share conditions (such as Viagra= 0), every pair of rules will

have at least some mutually exclusive conditions (such as lottery= 1 in the second rule

and lottery= 0 in the third). However, this is not always the case: rules can have a

certain overlap.

Example 1.6 (Overlapping rules). Consider the following rules:

·if lottery= 1 then Class=Y= spam·
·if Peter= 1 then Class=Y= ham·

As can be seen in Figure 1.6, these rules overlap for lottery= 1 ∧ Peter= 1, for

which they make contradictory predictions. Furthermore, they fail to make any

predictions for lottery= 0 ∧ Peter= 0.
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Figure 1.6. The effect of overlapping rules in instance space. The two rules make contradictory

predictions in the top right-hand corner, and no prediction at all in the bottom left-hand corner.

A logician would say that rules such as these are both inconsistent and incomplete.

To address incompleteness, we could add a default rule to predict, e.g., the majority

class for instances not covered by any rule. There are a number of options to deal with

overlapping rules, which will be further considered in Chapter 6.

Tree-learning algorithms typically work in a top–down fashion. The first task is to

find a good feature to split on at the top of the tree. The aim here is to find splits that

result in improved purity of the nodes on the next level, where the purity of a node

refers to the degree in which the training examples belonging to that node are of the

same class. Once the algorithm has found such a feature, the training set is partitioned

into subsets, one for each node resulting from the split. For each of these subsets, we

again find a good feature to split on, and so on. An algorithm that works by repeatedly

splitting a problem into small sub-problems is what computer scientists call a divide-

and-conquer algorithm. We stop splitting a node when all training examples belonging

to that node are of the same class. Most rule learning algorithms also work in a top–

down fashion. We learn a single rule by repeatedly adding conditions to the rule until

the rule only covers examples of a single class. We then remove the covered examples

of that class, and repeat the process. This is sometimes called a separate-and-conquer

approach.

An interesting aspect of logical models, which sets them aside from most geomet-

ric and probabilistic models, is that they can, to some extent, provide explanations

for their predictions. For example, a prediction assigned by a decision tree could be

explained by reading off the conditions that led to the prediction from root to leaf.

The model itself can also easily be inspected by humans, which is why they are some-

times called declarative. Declarative models do not need to be restricted to the simple

rules that we have considered so far. The logical rule learning system Progol found the
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following set of conditions to predict whether a molecular compound is carcinogenic

(causes cancer):

1. it tests positive in the Salmonella assay; or

2. it tests positive for sex-linked recessive lethal mutation in Drosophila; or

3. it tests negative for chromosome aberration; or

4. it has a carbon in a six-membered aromatic ring with a partial charge of −0.13;

or

5. it has a primary amine group and no secondary or tertiary amines; or

6. it has an aromatic (or resonant) hydrogen with partial charge ≥ 0.168; or

7. it has a hydroxy oxygen with a partial charge ≥−0.616 and an aromatic (or reso-

nant) hydrogen; or

8. it has a bromine; or

9. it has a tetrahedral carbon with a partial charge ≤ −0.144 and tests positive on

Progol’s mutagenicity rules.6

The first three conditions concerned certain tests that were carried out for all molecules

and whose results were recorded in the data as Boolean features. In contrast, the re-

maining six rules all refer to the structure of the molecule and were constructed entirely

by Progol. For instance, rule 4 predicts that a molecule is carcinogenic if it contains a

carbon atom with certain properties. This condition is different from the first three in

that it is not a pre-recorded feature in the data, but a new feature that is constructed by

Progol during the learning process because it helps to explain the data.

Grouping and grading

We have looked at three general types of models: geometric models, probabilistic mod-

els and logical models. As I indicated, although there are some underlying principles

pertaining to each of these groups of models, the main reason for dividing things up

along this dimension is one of convenience. Before I move on to the third main ingre-

dient of machine learning, features, I want to briefly introduce another important but

somewhat more abstract dimension that is in some sense orthogonal to the geometric–

probabilistic–logical dimension. This is the distinction between grouping models and

grading models. The key difference between these models is the way they handle the

instance space.

Grouping models do this by breaking up the instance space into groups or seg-

ments, the number of which is determined at training time. One could say that group-

ing models have a fixed and finite ‘resolution’ and cannot distinguish between individ-

ual instances beyond this resolution. What grouping models do at this finest resolution

6Mutagenic molecules cause mutations in DNA and are often carcinogenic. This last rule refers to a set of

rules that was learned earlier by Progol to predict mutagenicity.
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Figure 1.7. A ‘map’ of some of the models that will be considered in this book. Models that share

characteristics are plotted closer together: logical models to the right, geometric models on the

top left and probabilistic models on the bottom left. The horizontal dimension roughly ranges

from grading models on the left to grouping models on the right.

is often something very simple, such as assigning the majority class to all instances that

fall into the segment. The main emphasis of training a grouping model is then on de-

termining the right segments so that we can get away with this very simple labelling at

the local segment level. Grading models, on the other hand, do not employ such a no-

tion of segment. Rather than applying very simple, local models, they form one global

model over the instance space. Consequently, grading models are (usually) able to dis-

tinguish between arbitrary instances, no matter how similar they are. Their resolution

is, in theory, infinite, particularly when working in a Cartesian instance space.

A good example of grouping models are the tree-based models we have just con-

sidered. They work by repeatedly splitting the instance space into smaller subsets. Be-

cause trees are usually of limited depth and don’t contain all the available features, the

subsets at the leaves of the tree partition the instance space with some finite resolu-

tion. Instances filtered into the same leaf of the tree are treated the same, regardless of

any features not in the tree that might be able to distinguish them. Support vector ma-

chines and other geometric classifiers are examples of grading models. Because they

work in a Cartesian instance space, they are able to represent and exploit the minutest

differences between instances. As a consequence, it is always possible to come up with

a new test instance that receives a score that has not been given to any previous test

instance.

The distinction between grouping and grading models is relative rather than
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Figure 1.8. A taxonomy describing machine learning methods in terms of the extent to which

they are grading or grouping models, logical, geometric or a combination, and supervised or un-

supervised. The colours indicate the type of model, from left to right: logical (red), probabilistic

(orange) and geometric (purple).

absolute, and some models combine both features. For instance, even though linear

classifiers are a prime example of a grading model, it is easy to think of instances that

a linear model can’t distinguish, namely instances on a line or plane parallel to the

decision boundary. The point is not so much that there aren’t any segments, but that

there are infinitely many. On the other end of the spectrum, regression trees combine

grouping and grading features, as we shall see a little later. The overall picture is thus

somewhat like what is depicted in Figure 1.7. A taxonomy of eight different models

discussed in the book is given in Figure 1.8.7 These models will be discussed in detail

in Chapters 4–9.

1.3 Features: the workhorses of machine learning

Now that we have seen some more examples of machine learning tasks and models, we

turn to the third and final main ingredient. Features determine much of the success of

a machine learning application, because a model is only as good as its features. A fea-

7The figures have been generated from data explained in Example 1.7 below.
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Model geom stats logic group grad disc real sup unsup multi

Trees 1 0 3 3 0 3 2 3 2 3

Rules 0 0 3 3 1 3 2 3 0 2

naive Bayes 1 3 1 3 1 3 1 3 0 3

kNN 3 1 0 2 2 1 3 3 0 3

Linear Classifier 3 0 0 0 3 1 3 3 0 0

Linear Regression 3 1 0 0 3 0 3 3 0 1

Logistic Regression 3 2 0 0 3 1 3 3 0 0

SVM 2 2 0 0 3 2 3 3 0 0

Kmeans 3 2 0 1 2 1 3 0 3 1

GMM 1 3 0 0 3 1 3 0 3 1

Associations 0 0 3 3 0 3 1 0 3 1

Table 1.4. The MLM data set describing properties of machine learning models. Both Figure 1.7

and Figure 1.8 were generated from this data.

ture can be thought of as a kind of measurement that can be easily performed on any

instance. Mathematically, they are functions that map from the instance space to some

set of feature values called the domain of the feature. Since measurements are often

numerical, the most common feature domain is the set of real numbers. Other typi-

cal feature domains include the set of integers, for instance when the feature counts

something, such as the number of occurrences of a particular word; the Booleans, if

our feature is a statement that can be true or false for a particular instance, such as ‘this

e-mail is addressed to Peter Flach’; and arbitrary finite sets, such as a set of colours, or

a set of shapes.

Example 1.7 (The MLM data set). Suppose we have a number of learning mod-

els that we want to describe in terms of a number of properties:

� the extent to which the models are geometric, probabilistic or logical;

� whether they are grouping or grading models;

� the extent to which they can handle discrete and/or real-valued features;

� whether they are used in supervised or unsupervised learning; and

� the extent to which they can handle multi-class problems.

The first two properties could be expressed by discrete features with three and

two values, respectively; or if the distinctions are more gradual, each aspect could

be rated on some numerical scale. A simple approach would be to measure each

property on an integer scale from 0 to 3, as in Table 1.4. This table establishes

a data set in which each row represents an instance and each column a fea-

ture. For example, according to this (highly simplified) data some models are
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purely grouping models (Trees, Associations) or purely grading models (the Lin-

ear models, Logistic Regression and GMM), whereas others are more mixed. We

can also see that Trees and Rules have very similar values for most of the features,

whereas GMM and Associations have mostly different values.

This small data set will be used in several examples throughout the book.

In fact, the taxonomy in Figure 1.8 was adapted by hand from a decision tree

learned from this small data set, using the models as classes. And the plot in

Figure 1.7 was constructed using a dimensionality reduction technique which

preserves pairwise distances as much as possible.

Two uses of features

It is worth noting that features and models are intimately connected, not just because

models are defined in terms of features, but because a single feature can be turned into

what is sometimes called a univariate model. We can therefore distinguish two uses

of features that echo the distinction between grouping and grading models. A very

common use of features, particularly in logical models, is to zoom in on a particular

area of the instance space. Let f be a feature counting the number of occurrences of the

word ‘Viagra’ in an e-mail, and let x stand for an arbitrary e-mail, then the condition

f (x)= 0 selects e-mails that don’t contain the word ‘Viagra’, f (x) 
= 0 or f (x)> 0 selects

e-mails that do, f (x)≥ 2 selects e-mails that contain the word at least twice, and so on.

Such conditions are called binary splits, because they divide the instance space into

two groups: those that satisfy the condition, and those that don’t. Non-binary splits

are also possible: for instance, if g is a feature that has the value ‘tweet’ for e-mails with

up to 20 words, ‘short’ for e-mails with 21 to 50 words, ‘medium’ for e-mails with 51 to

200 words, and ‘long’ for e-mails with more than 200 words, then the expression g (x)

represents a four-way split of the instance space. As we have already seen, such splits

can be combined in a feature tree, from which a model can be built.

A second use of features arises particularly in supervised learning. Recall that a

linear classifier employs a decision rule of the form
∑n

i=1 wi xi > t , where xi is a nu-

merical feature.8 The linearity of this decision rule means that each feature makes an

independent contribution to the score of an instance. This contribution depends on

the weight wi : if this is large and positive, a positive xi increases the score; if wi � 0, a

positive xi decreases the score; if wi ≈ 0, xi ’s influence is negligible. Thus, the feature

8Notice we employ two different notations for features: sometimes we write f (x) if it is more convenient

to view a feature as a function applied to instance x, and sometimes we write xi if it is more convenient to

view an instance as a vector of feature values.
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Figure 1.9. (left) A regression tree combining a one-split feature tree with linear regression mod-

els in the leaves. Notice how x is used as both a splitting feature and a regression variable. (right)

The function y = cosπx on the interval −1 ≤ x ≤ 1, and the piecewise linear approximation

achieved by the regression tree.

makes a precise and measurable contribution to the final prediction. Also note that

that individual features are not ‘thresholded’, but their full ‘resolution’ is used in com-

puting an instance’s score. These two uses of features – ‘features as splits’ and ‘features

as predictors’ – are sometimes combined in a single model.

Example 1.8 (Two uses of features). Suppose we want to approximate y =
cosπx on the interval −1 ≤ x ≤ 1. A linear approximation is not much use here,

since the best fit would be y = 0. However, if we split the x-axis in two intervals

−1 ≤ x < 0 and 0 ≤ x ≤ 1, we could find reasonable linear approximations on

each interval. We can achieve this by using x both as a splitting feature and as a

regression variable (Figure 1.9).

Feature construction and transformation

There is a lot of scope in machine learning for playing around with features. In the

spam filter example, and text classification more generally, the messages or documents

don’t come with built-in features; rather, they need to be constructed by the developer

of the machine learning application. This feature construction process is absolutely

crucial for the success of a machine learning application. Indexing an e-mail by the

words that occur in it (called a bag of words representation as it disregards the order

of the words in the e-mail) is a carefully engineered representation that manages to

amplify the ‘signal’ and attenuate the ‘noise’ in spam e-mail filtering and related clas-

sification tasks. However, it is easy to conceive of problems where this would be exactly
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Figure 1.10. (left) Artificial data depicting a histogram of body weight measurements of people

with (blue) and without (red) diabetes, with eleven fixed intervals of 10 kilograms width each.

(right) By joining the first and second, third and fourth, fifth and sixth, and the eighth, ninth and

tenth intervals, we obtain a discretisation such that the proportion of diabetes cases increases

from left to right. This discretisation makes the feature more useful in predicting diabetes.

the wrong thing to do: for instance if we aim to train a classifier to distinguish between

grammatical and ungrammatical sentences, word order is clearly signal rather than

noise, and a different representation is called for.

It is often natural to build a model in terms of the given features. However, we are

free to change the features as we see fit, or even to introduce new features. For instance,

real-valued features often contain unnecessary detail that can be removed by discreti-

sation. Imagine you want to analyse the body weight of a relatively small group of, say,

100 people, by drawing a histogram. If you measure everybody’s weight in kilograms

with one position after the decimal point (i.e., your precision is 100 grams), then your

histogram will be sparse and spiky. It is hard to draw any general conclusions from

such a histogram. It would be much more useful to discretise the body weight mea-

surements into intervals of 10 kilograms. If we are in a classification context, say we’re

trying to relate body weight to diabetes, we could then associate each bar of the his-

togram with the proportion of people having diabetes among the people whose weight

falls in that interval. In fact, as we shall see in Chapter 10, we can even choose the

intervals such that this proportion is monotonically increasing (Figure 1.10).

The previous example gives another illustration of how, for a particular task such as

classification, we can improve the signal-to-noise ratio of a feature. In more extreme

cases of feature construction we transform the entire instance space. Consider Figure

1.11: the data on the left is clearly not linearly separable, but by mapping the instance

space into a new ‘feature space’ consisting of the squares of the original features we see

that the data becomes almost linearly separable. In fact, by adding in a third feature

we can perform a remarkable trick: we can build this feature space classifier without

actually constructing the feature space.
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Figure 1.11. (left) A linear classifier would perform poorly on this data. (right) By transforming

the original (x, y) data into (x′, y ′)= (x2, y2), the data becomes more ‘linear’, and a linear decision

boundary x′ + y ′ = 3 separates the data fairly well. In the original space this corresponds to a

circle with radius
�

3 around the origin.

Example 1.9 (The kernel trick). Let x1 = (x1, y1) and x2 = (x2, y2) be two data

points, and consider the mapping (x, y) �→ (x2, y2,
�

2x y) to a three-dimensional

feature space. The points in feature space corresponding to x1 and x2 are x′1 =
(x2

1, y2
1 ,
�

2x1 y1) and x′2 = (x2
2, y2

2 ,
�

2x2 y2). The dot product of these two feature

vectors is

x′1 ·x′2 = x2
1 x2

2 + y2
1 y2

2 +2x1 y1x2 y2 = (x1x2+ y1 y2)2 = (x1 ·x2)2

That is, by squaring the dot product in the original space we obtain the dot prod-

uct in the new space without actually constructing the feature vectors! A function

that calculates the dot product in feature space directly from the vectors in the

original space is called a kernel – here the kernel is κ(x1,x2)= (x1 ·x2)2.

We can apply this kernel trick to the basic linear classifier if we modify the

way the decision boundary is calculated. Recall that the basic linear classifier

learns a decision boundary w ·x= t with w= p−n being the difference between

the mean of the positive examples and the mean of the negative examples. As an

example, suppose we have n= (0,0) and p= (0,1), and let’s assume for the sake of

argument that the positive mean has been obtained from two training examples

p1 = (−1,1) and p2 = (1,1). This means that p = 1
2

(
p1+p2

)
and we can rewrite

the decision boundary as 1
2 p1 ·x+ 1

2 p2 ·x−n ·x= t . Applying the kernel trick we

obtain the following decision boundary: 1
2κ(p1,x)+ 1

2κ(p2,x)−κ(n,x)= t . Using
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the kernel defined earlier we have κ(p1,x) = (−x + y)2, κ(p2,x) = (x + y)2 and

κ(n,x)= 0, from which we derive the decision boundary 1
2 (−x+ y)2+ 1

2 (x+ y)2 =
x2+ y2 = t , i.e., a circle around the origin with radius

�
t . Figure 1.11 illustrates

this further for a larger data set.

The key point in this ‘kernelisation’ of the basic linear classifier is that we don’t sum-

marise the training data by the positive and negative means – rather, we keep the train-

ing data (here: p1, p2 and n), so that when classifying a new instance we can evaluate

the kernel on it paired with each training example. In return for this more elaborate

calculation we get the ability to construct much more flexible decision boundaries.

Interaction between features

One fascinating and multi-faceted aspect of features is that they may interact in various

ways. Sometimes such interaction can be exploited, sometimes it can be ignored, and

sometimes it poses a challenge. We have already seen an example of feature interaction

when we talked about Bayesian spam filtering. Clearly, if we notice the term ‘Viagra’ in

an e-mail, we are not really surprised to find that the e-mail also contains the phrase

‘blue pill’. Ignoring this interaction, as the naive Bayes classifier does, means that we

are overestimating the amount of information conveyed by observing both phrases in

the same e-mail. Whether we can get away with this depends on our task: in spam e-

mail classification it turns out not to be a big problem, apart from the fact that we may

need to adapt the decision threshold to account for this effect.

We can observe other examples of feature interaction in Table 1.4 on p.39. Con-

sider the features ‘grad’ and ‘real’, which assess the extent to which models are of the

grading kind, and the extent to which they can handle real-valued features. You may

observe that the values of these two features differ by at most 1 for all but one model.

Statisticians say that these features are positively correlated (see Background 1.3). An-

other pair of positively correlated features is ‘logic’ and ‘disc’, indicating logical models

and the ability to handle discrete features. We can also see some negatively correlated

features, where the value of one goes up when the other goes down: this holds natu-

rally for ‘split’ and ‘grad’, indicating whether models are primarily grouping or grading

models; and also for ‘logic’ and ‘grad’. Finally, pairs of uncorrelated features are ‘unsup’

and ‘multi’, standing for unsupervised models and the ability to handle more than two

classes; and ‘disc’ and ‘sup’, the latter of which indicates supervised models.

In classification, features may be differently correlated depending on the class. For

instance, it is conceivable that for somebody whose last name is Hilton and who works

for the Paris city council, e-mails with just the word ‘Paris’ or just the word ‘Hilton’
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Random variables describe possible outcomes of a random process. They can be either

discrete (e.g., the possible outcomes of rolling a die are {1,2,3,4,5,6}) or continuous (e.g.,

the possible outcomes of measuring somebody’s weight in kilograms). Random variables

do not need to range over integer or real numbers, but it does make the mathematics quite

a bit simpler so that is what we assume here.

If X is a discrete random variable with probability distribution P (X ) then the expected

value of X is E [X ] = ∑x xP (x). For instance, the expected value of tossing a fair die is

1 · 1
6 +2 · 1

6 + . . .+6 · 1
6 = 3.5. Notice that this is not actually a possible outcome. For a con-

tinuous random variable we need to replace the sum with an integral, and the probability

distribution with a probability density function: E [X ] = ∫+∞−∞ xp(x)d x. The idea of this

rather abstract concept is that if we take a sample x1, . . . , xn of outcomes of the random

process, the expected value is what we expect the sample mean x = 1
n
∑n

i=1 xi to be – this

is the celebrated law of large numbers first proved by Jacob Bernoulli in 1713. For this rea-

son the expected value is often called the population mean, but it is important to realise

that the latter is a theoretical value, while the sample mean is an empirical estimate of that

theoretical value.

The expectation operator can be applied to functions of random variables. For instance,

the (population)variance of a discrete random variable is defined as E
[
(X −E [X ])2] =∑

x (x − E [X ])2P (x) – this measures the spread of the distribution around the expected

value. Notice that

E
[

(X −E [X ])2
]
=∑

x
(x−E [X ])2P (x)= E

[
X 2
]
−E [X ]2

We can similarly define the sample variance asσ2 = 1
n
∑n

i=1(xi−x)2, which decomposes as
1
n
∑n

i=1 x2
i −x2. You will sometimes see the sample variance defined as 1

n−1
∑n

i=1(xi −x)2:

dividing by n − 1 rather than n results in a slightly larger estimate, which compensates

for the fact that we are calculating the spread around the sample mean rather than the

population mean.

The (population) covariance between two discrete random variables X and Y is defined

as E [(X −E [X ])(Y −E [Y ])] = E [X ·Y ]− E [X ] · E [Y ] The variance of X is a special case of

this, with Y = X . Unlike the variance, the covariance can be positive as well as neg-

ative. Positive covariance means that both variables tend to increase or decrease to-

gether; negative covariance means that if one variable increases, the other tends to de-

crease. If we have a sample of pairs of values of X and Y , sample covariance is defined as
1
n
∑n

i=1(xi − x)(yi − y) = 1
n
∑n

i=1 xi yi − x y . By dividing the covariance between X and Y

by
√
σ2

X σ2
Y we obtain the correlation coefficient, which is a number between −1 and +1.

Background 1.3. Expectations and estimators.
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are indicative of ham, whereas e-mails with both terms are indicative of spam. Put

differently, within the spam class these features are positively correlated, while within

the ham class they are negatively correlated. In such a case, ignoring these interactions

will be detrimental for classification performance. In other cases, feature correlations

may obscure the true model – we shall see examples of this later in the book. On the

other hand, feature correlation sometimes helps us to zoom in on the relevant part of

the instance space.

There are other ways in which features can be related. Consider the following three

features that can be true or false of a molecular compound:

1. it has a carbon in a six-membered aromatic ring;

2. it has a carbon with a partial charge of −0.13;

3. it has a carbon in a six-membered aromatic ring with a partial charge of −0.13.

We say that the third feature is more specific (or less general) than the other two, be-

cause if the third feature is true, then so are the first and the second. However, the

converse does not hold: if both first and second feature are true, the third feature may

still be false (because the carbon in the six-membered ring may not be the same as the

one with a partial charge of −0.13). We can exploit these relationships when searching

for features to add to our logical model. For instance, if we find that the third feature is

true of a particular negative example that we’re trying to exclude, then there is no point

in considering the more general first and second features, because they will not help

us in excluding the negative either. Similarly, if we find that the first feature is false of

a particular positive we’re trying to include, there is no point in considering the more

specific third feature instead. In other words, these relationships help us to structure

our search for predictive features.

1.4 Summary and outlook

My goal in this chapter has been to take you on a tour to admire the machine learning

landscape, and to raise your interest sufficiently to want to read the rest of the book.

Here is a summary of the things we have been looking at.

� Machine learning is about using the right features to build the right models that

achieve the right tasks. These tasks include: binary and multi-class classifica-

tion, regression, clustering and descriptive modelling. Models for the first few of

these tasks are learned in a supervised fashion requiring labelled training data.

For instance, if you want to train a spam filter using machine learning, you need

a training set of e-mails labelled spam and ham. If you want to know how good

the model is you also need labelled test data that is distinct from the training
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data, as evaluating your model on the data it was trained on will paint too rosy a

picture: a test set is needed to expose any overfitting that occurs.

� Unsupervised learning, on the other hand, works with unlabelled data and so

there is no test data as such. For instance, to evaluate a particular partition of

data into clusters, one can calculate the average distance from the cluster cen-

tre. Other forms of unsupervised learning include learning associations (things

that tend to occur together) and identifying hidden variables such as film gen-

res. Overfitting is also a concern in unsupervised learning: for instance, assign-

ing each data point its own cluster will reduce the average distance to the cluster

centre to zero, yet is clearly not very useful.

� On the output side we can distinguish between predictive models whose out-

puts involve the target variable and descriptive models which identify interesting

structure in the data. Often, predictive models are learned in a supervised set-

ting while descriptive models are obtained by unsupervised learning methods,

but there are also examples of supervised learning of descriptive models (e.g.,

subgroup discovery which aims at identifying regions with an unusual class dis-

tribution) and unsupervised learning of predictive models (e.g., predictive clus-

tering where the identified clusters are interpreted as classes).

� We have loosely divided machine learning models into geometric models, prob-

abilistic models and logical models. Geometric models are constructed in Carte-

sian instance spaces, using geometric concepts such as planes and distances.

The prototypical geometric model is the basic linear classifier, which constructs

a decision plane orthogonal to the line connecting the positive and negative cen-

tres of mass. Probabilistic models view learning as a process of reducing uncer-

tainty using data. For instance, a Bayesian classifier models the posterior dis-

tribution P (Y |X ) (or its counterpart, the likelihood function P (X |Y )) which tells

me the class distribution Y after observing the feature values X . Logical models

are the most ‘declarative’ of the three, employing if–then rules built from logical

conditions to single out homogeneous areas in instance space.

� We have also introduced a distinction between grouping and grading models.

Grouping models divide the instance space into segments which are determined

at training time, and hence have a finite resolution. On each segment, grouping

models usually fit a very simple kind of model, such as ‘always predict this class’.

Grading models fit a more global model, graded by the location of an instance in

instance space (typically, but not always, a Cartesian space). Logical models are

typical examples of grouping models, while geometric models tend to be grad-

ing in nature, although this distinction isn’t clear-cut. While this sounds very
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abstract at the moment, the distinction will become much clearer when we dis-

cuss coverage curves in the next chapter.

� Last but not least, we have discussed the role of features in machine learning.

No model can exist without features, and sometimes a single feature is enough

to build a model. Data doesn’t always come with ready-made features, and of-

ten we have to transform or even construct features. Because of this, machine

learning is often an iterative process: we only know we have captured the right

features after we have constructed the model, and if the model doesn’t perform

satisfactorily we need to analyse its performance to understand in what way the

features need to be improved.

What you’ll find in the rest of the book

In the next nine chapters, we will follow the structure laid out above, and look in detail

at

� machine learning tasks in Chapters 2 and 3;

� logical models: concept learning in Chapter 4, tree models in Chapter 5 and rule

models in Chapter 6;

� geometric models: linear models in Chapter 7 and distance-based models in

Chapter 8;

� probabilistic models in Chapter 9; and

� features in Chapter 10.

Chapter 11 is devoted to techniques for training ‘ensembles’ of models that have cer-

tain advantages over single models. In Chapter 12 we will consider a number of meth-

ods for what machine learners call ‘experiments’, which involve training and evaluating

models on real data. Finally, in the Epilogue we will wrap up the book and take a look

ahead.

�



CHAPTER 2

Binary classification and related tasks

I
N THIS CHAPTER and the next we take a bird’s-eye view of the wide range of different

tasks that can be solved with machine learning techniques. ‘Task’ here refers to what-

ever it is that machine learning is intended to improve performance of (recall the def-

inition of machine learning on p.3), for example, e-mail spam recognition. Since this

is a classification task, we need to learn an appropriate classifier from training data.

Many different types of classifiers exist: linear classifiers, Bayesian classifiers, distance-

based classifiers, to name a few. We will refer to these different types as models; they

are the subject of Chapters 4–9. Classification is just one of a range of possible tasks

for which we can learn a model: other tasks that will pass the review in this chapter

are class probability estimation and ranking. In the next chapter we will discuss re-

gression, clustering and descriptive modelling. For each of these tasks we will discuss

what it is, what variants exist, how performance at the task could be assessed, and how

it relates to other tasks. We will start with some general notation that is used in this

chapter and throughout the book (see Background 2.1 for the relevant mathematical

concepts).

The objects of interest in machine learning are usually referred to as instances. The

set of all possible instances is called the instance space, denoted X in this book. To

illustrate, X could be the set of all possible e-mails that can be written using the Latin

49
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alphabet.1 We furthermore distinguish between the label space L and the output space

Y . The label space is used in supervised learning to label the examples. In order to

achieve the task under consideration we need a model: a mapping from the instance

space to the output space. For instance, in classification the output space is a set of

classes, while in regression it is the set of real numbers. In order to learn such a model

we require a training set Tr of labelled instances (x, l (x)), also called examples, where

l : X →L is a labelling function.

Based on this terminology and notation, and concentrating on supervised learning

of predictive models for the duration of the chapter, Table 2.1 distinguishes a number

of specific scenarios. The most commonly encountered machine learning scenario is

where the label space coincides with the output space. That is, Y = L and we are

trying to learn an approximation l̂ : X →L to the true labelling function l , which is

only known through the labels it assigned to the training data. This scenario covers

both classification and regression. In cases where the label space and the output space

differ, this usually serves the purpose of learning a model that outputs more than just

a label – for instance, a score for each possible label. In this case we have Y =Rk , with

k = |L | the number of labels.

Matters may be complicated by noise, which can take the form of label noise – in-

stead of l = l (x) we observe some corrupted label l ′ – or instance noise – instead of x

we observe an instance x ′ that is corrupted in some way. One consequence of noisy

data is that it is generally not advisable to try to match the training data exactly, as

this may lead to overfitting the noise. Some of the labelled data is usually set aside

for evaluating or testing a classifier, in which case it is called a test set and denoted

by Te. We use superscripts to restrict training or test set to a particular class: e.g.,

Te⊕ = {(x, l (x))|x ∈ Te, l (x) = ⊕} is the set of positive test examples, and Te� is the set

of negative test examples.

The simplest kind of input space arises when instances are described by a fixed

number of features, also called attributes, predictor variables, explanatory variables or

independent variables. Indicating the set of values or domain of a feature by Fi , we

then have that X =F1×F2× . . .×Fd , and thus every instance is a d-vector of feature

values. In some domains the features to use readily suggest themselves, whereas in

other domains they need to be constructed. For example, in the spam filter example

in the Prologue we constructed a large number of features, one for each word in a vo-

cabulary, counting the number of occurrences of that word in the e-mail. Even when

features are given explicitly we often want to transform them to maximise their useful-

ness for the task at hand. We will discuss this in considerable detail in Chapter 10.

1It is perhaps worth emphasising that an instance space like this is an unimaginably vast set (e.g., the set

of all possible text messages of 160 characters using only lower-case letters, spaces and full stops is 28160, a

number too large for most pocket calculators), and that only a minuscule fraction of this set carries enough

meaning to be possibly encountered in the real world.
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We briefly review some important concepts from discrete mathematics. A set is a collec-

tion of objects, usually of the same kind (e.g., the set of all natural numbers N or the set of

real numbers R). We write x ∈ A if x is an element of set A, and A ⊆ B if all elements of A

are also elements of B (this includes the possibility that A and B are the same set, which

is equivalent to A ⊆ B and B ⊆ A). The intersection and union of two sets are defined as

A∩B = {x|x ∈ A and x ∈ B} and A∪B = {x|x ∈ A or x ∈ B}. The difference of two sets is

defined as A \ B = {x|x ∈ A and x 
∈ B}. It is customary to fix a universe of discourse U such

that all sets under consideration are subsets of U . The complement of a set A is defined as

A =U \ A. Two sets are disjoint if their intersection is empty: A∩B = �. The cardinality

of a set A is its number of elements and is denoted |A|. The powerset of a set A is the set

of all its subsets 2A = {B |B ⊆ A}; its cardinality is |2A | = 2|A|. The characteristic function of

a set A is the function f : U → {true, false} such that f (x)= true if x ∈ A and f (x)= false if

x ∈U \ A.

If A and B are sets, the Cartesian product A×B is the set of all pairs {(x, y)|x ∈ A and y ∈B};

this generalises to products of more than two sets. A (binary) relation is a set of pairs

R ⊆ A×B for some sets A and B ; if A =B we say the relation is over A. Instead of (x, y) ∈R

we also write xR y . A relation over A is (i) reflexive if xRx for all x ∈ A; (ii) symmetric if xR y

implies yRx for all x, y ∈ A; (iii) antisymmetric if xR y and yRx implies x = y for all x, y ∈ A;

(iv) transitive if xR y and yRz implies xRz for all x, y, z ∈ A. (v) total if xR y or yRx for all

x, y ∈ A.

A partial order is a binary relation that is reflexive, antisymmetric and transitive. For in-

stance, the subset relation ⊆ is a partial order. A total order is a binary relation that is

total (hence reflexive), antisymmetric and transitive. The ≤ relation on real numbers is

a total order. If xR y or yRx we say that x and y are comparable; otherwise they are in-

comparable. An equivalence relation is a binary relation ≡ that is reflexive, symmetric

and transitive. The equivalence class of x is [x] = {y |x ≡ y}. For example, the binary re-

lation ‘contains the same number of elements as’ over any set is an equivalence relation.

Any two equivalence classes are disjoint, and the union of all equivalence classes is the

whole set – in other words, the set of all equivalence classes forms a partition of the set.

If A1, . . . , An is a partition of a set A, i.e. A1∪ . . .∪ An = A and Ai ∩ A j =� for all i 
= j , we

write A = A1� . . .� An .

To illustrate this, let T be a feature tree, and define a relation∼T⊆X ×X such that x ∼T x′

if and only if x and x′ are assigned to the same leaf of feature tree T , then ∼T is an equiv-

alence relation, and its equivalence classes are precisely the instance space segments as-

sociated with T .

Background 2.1. Useful concepts from discrete mathematics.

The sections in this chapter are devoted to the first three scenarios in Table 2.1:
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Task Label space Output space Learning problem

Classification L =C Y =C learn an approximation ĉ :

X → C to the true labelling

function c

Scoring and

ranking

L =C Y =R|C | learn a model that outputs a

score vector over classes

Probability

estimation

L =C Y = [0,1]|C | learn a model that outputs a

probability vector over classes

Regression L =R Y =R learn an approximation f̂ :

X → R to the true labelling

function f

Table 2.1. Predictive machine learning scenarios.

classification in Section 2.1, scoring and ranking in Section 2.2 and class probability

estimation in Section 2.3. To keep things manageable we mostly restrict attention to

two-class tasks in this chapter and deal with more than two classes in Chapter 3. Re-

gression, unsupervised and descriptive learning will also be considered there.

Throughout this chapter I will illustrate key concepts by means of examples us-

ing simple models of the kind discussed in the Prologue. These models will either be

simple tree-based models, representative of grouping models, or linear models, rep-

resentative of grading models. Sometimes we will even construct models from single

features, a setting that could be described as univariate machine learning. We will start

dealing with the question of how to learn such models from Chapter 4 onwards.

2.1 Classification

Classification is the most common task in machine learning. A classifier is a mapping

ĉ : X →C , where C = {C1,C2, . . . ,Ck } is a finite and usually small set of class labels. We

will sometimes also use Ci to indicate the set of examples of that class. We use the ‘hat’

to indicate that ĉ(x) is an estimate of the true but unknown function c(x). Examples

for a classifier take the form (x,c(x)), where x ∈X is an instance and c(x) is the true

class of the instance. Learning a classifier involves constructing the function ĉ such

that it matches c as closely as possible (and not just on the training set, but ideally on

the entire instance space X ).

In the simplest case we have only two classes which are usually referred to as pos-

itive and negative, ⊕and �, or +1 and −1. Two-class classification is often called bi-

nary classification (or concept learning, if the positive class can be meaningfully called
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Figure 2.1. (left) A feature tree with training set class distribution in the leaves. (right) A decision

tree obtained using the majority class decision rule.

a concept). Spam e-mail filtering is a good example of binary classification, in which

spam is conventionally taken as the positive class, and ham as the negative class (clearly,

positive here doesn’t mean ‘good’!). Other examples of binary classification include

medical diagnosis (the positive class here is having a particular disease) and credit card

fraud detection.

The feature tree in Figure 2.1 (left) can be turned into a classifier by labelling each

leaf with a class. The simplest way to do this is by assigning the majority class in each

leaf, resulting in the decision tree in Figure 2.1 (right). The classifier works as follows: if

an e-mail contains the word ‘Viagra’ it is classified as spam (right-most leaf); otherwise,

the occurrence of the word ‘lottery’ decides whether it gets labelled spam or ham.2

From the numbers in Figure 2.1 we can get an idea how well this classifier does. The

left-most leaf correctly predicts 40 ham e-mails but also mislabels 20 spam e-mails

that contain neither ‘Viagra’ nor ‘lottery’. The middle leaf correctly classifies 10 spam

e-mails but also erroneously labels 5 ham e-mails as spam. The ‘Viagra’ test correctly

picks out 20 spam e-mails but also 5 ham e-mails. Taken together, this means that 30

out of 50 spam e-mails are classified correctly, and 40 out of 50 ham e-mails.

Assessing classification performance

The performance of such classifiers can be summarised by means of a table known as a

contingency table or confusion matrix (Table 2.2 (left)). In this table, each row refers to

2If you are keen to know how such a decision tree can be learned from data, you may want to take a sneak

preview at Algorithm 5.1 on p.132.
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actual classes as recorded in the test set, and each column to classes as predicted by the

classifier. So, for instance, the first row states that the test set contains 50 positives, 30

of which were correctly predicted and 20 incorrectly. The last column and the last row

give the marginals (i.e., column and row sums). Marginals are important because they

allow us to assess statistical significance. For instance, the contingency table in Table

2.2 (right) has the same marginals, but the classifier clearly makes a random choice as

to which predictions are positive and which are negative – as a result the distribution

of actual positives and negatives in either predicted class is the same as the overall

distribution (uniform in this case).

Predicted ⊕ Predicted �
Actual ⊕ 30 20 50

Actual � 10 40 50

40 60 100

⊕ �
⊕ 20 30 50

� 20 30 50

40 60 100

Table 2.2. (left) A two-class contingency table or confusion matrix depicting the performance

of the decision tree in Figure 2.1. Numbers on the descending diagonal indicate correct predic-

tions, while the ascending diagonal concerns prediction errors. (right) A contingency table with

the same marginals but independent rows and columns.

From a contingency table we can calculate a range of performance indicators. The

simplest of these is accuracy, which is the proportion of correctly classified test in-

stances. In the notation introduced at the beginning of this chapter, accuracy over a

test set Te is defined as

acc= 1

|Te|
∑

x∈Te
I [ĉ(x)= c(x)] (2.1)

Here, the function I [·] denotes the indicator function, which is 1 if its argument evalu-

ates to true, and 0 otherwise. In this case it is a convenient way to count the number of

test instances that are classified correctly by the classifier (i.e., the estimated class label

ĉ(x) is equal to the true class label c(x)). For example, in Table 2.2 (left) the accuracy

of the classifier is 0.70 or 70%, and in Table 2.2 (right) it is 0.50. Alternatively, we can

calculate the error rate as the proportion of incorrectly classified instances, here 0.30

and 0.50, respectively. Clearly, accuracy and error rate sum to 1.

Test set accuracy can be seen as an estimate of the probability that an arbitrary

instance x ∈X is classified correctly: more precisely, it estimates the probability

PX (ĉ(x)= c(x))

(Notice that I write PX to emphasise that this is a probability distribution over the

instance space X ; I will often omit subscripts if this is clear from the context.) We
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typically only have access to the true classes of a small fraction of the instance space

and so an estimate is all we can hope to get. It is therefore important that the test set

is as representative as possible. This is usually formalised by the assumption that the

occurrence of instances in the world – i.e., how likely or typical a particular e-mail is

– is governed by an unknown probability distribution on X , and that the test set Te is

generated according to this distribution.

It is often convenient – not to say necessary – to distinguish performance on the

classes. To this end, we need some further terminology. Correctly classified positives

and negatives are referred to as true positives and true negatives, respectively. Incor-

rectly classified positives are, perhaps somewhat confusingly, called false negatives;

similarly, misclassified negatives are called false positives. A good way to think of this is

to remember that positive/negative refers to the classifier’s prediction, and true/false

refers to whether the prediction is correct or not. So, a false positive is something that

was incorrectly predicted as positive, and therefore an actual negative (e.g., a ham e-

mail misclassified as spam, or a healthy patient misclassified as having the disease in

question). In the previous example (Table 2.2 (left)) we have 30 true positives, 20 false

negatives, 40 true negatives and 10 false positives.

The true positive rate is the proportion of positives correctly classified, and can be

defined mathematically as

tpr =
∑

x∈Te I [ĉ(x)= c(x)=⊕]∑
x∈Te I [c(x)=⊕]

(2.2)

True positive rate is an estimate of the probability that an arbitrary positive is classified

correctly, that is, an estimate of PX (ĉ(x) = ⊕|c(x) = ⊕). Analogously, the true nega-

tive rate is the proportion of negatives correctly classified (see Table 2.3 on p.57 for the

mathematical definition), and estimates PX (ĉ(x)=�|c(x)=�). These rates, which are

sometimes called sensitivity and specificity, can be seen as per-class accuracies. In the

contingency table, the true positive and negative rates can be calculated by dividing

the number on the descending (good) diagonal by the row total. We can also talk about

per-class error rates, which is the false negative rate for the positives (i.e., the number

of misclassified positives or false negatives as a proportion of the total number of pos-

itives) and the false positive rate for the negatives (sometimes called the false alarm

rate). These rates can be found by dividing the number on the ascending (bad) diago-

nal by the row total.

In Table 2.2 (left) we have a true positive rate of 60%, a true negative rate of 80%, a

false negative rate of 40% and a false positive rate of 20%. In Table 2.2 (right) we have

a true positive rate of 40%, a true negative rate of 60%, a false negative rate of 60% and

a false positive rate of 40%. Notice that the accuracy in both cases is the average of

the true positive rate and the true negative rate (and the error rate is the average of the

false positive rate and the false negative rate). However, this is true only if the test set
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contains equal numbers of positives and negatives – in the general case we need to use

a weighted average, where the weights are the proportions of positives and negatives

in the test set.

Example 2.1 (Accuracy as a weighted average). Suppose a classifier’s predic-

tions on a test set are as in the following table:

Predicted ⊕ Predicted �
Actual ⊕ 60 15 75

Actual � 10 15 25

70 30 100

From this table, we see that the true positive rate is tpr = 60/75= 0.80 and the true

negative rate is tnr = 15/25 = 0.60. The overall accuracy is acc = (60+15)/100 =
0.75, which is no longer the average of true positive and negative rates. However,

taking into account the proportion of positives pos = 0.75 and the proportion of

negatives neg = 1−pos= 0.25, we see that

acc= pos · tpr+neg · tnr (2.3)

This equation holds in general: if the numbers of positives and negatives are

equal, we obtain the unweighted average from the earlier example (acc = (tpr+
tnr)/2).

Equation 2.3 has a neat intuition: good performance on either class contributes to

good classification accuracy, but the more prevalent class contributes more strongly. In

order to achieve good accuracy, a classifier should concentrate on the majority class,

particularly if the class distribution is highly unbalanced. However, it is often the case

that the majority class is also the least interesting class. To illustrate, suppose you issue

a query to an internet search engine,3 and suppose that for that particular query there

is only one relevant page in every 1 000 web pages. Now consider a ‘reluctant’ search

engine that doesn’t return any answers – i.e., it classifies every web page as irrelevant to

your query. Consequently, it will achieve 0% true positive rate and 100% true negative

rate. Because pos = 1/1000 = 0.1% and neg = 99.9%, the reluctant search engine’s ac-

curacy is very high (99.9%). Put differently, if we select a random web page uniformly

3An internet search engine can be seen as a binary classifier into the classes relevant and irrelevant, or

interesting and not interesting, if we fix the query – not very realistic in practice, but a useful analogy for our

purposes.
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Measure Definition Equal to Estimates

number of positives Pos=∑x∈Te I [c(x)=⊕]

number of negatives Neg =∑x∈Te I [c(x)=�] |Te|−Pos

number of true positives TP =∑x∈Te I [ĉ(x)= c(x)=⊕]

number of true negatives TN =∑x∈Te I [ĉ(x)= c(x)=�]

number of false positives FP =∑x∈Te I [ĉ(x)=⊕,c(x)=�] Neg−TN

number of false negatives FN =∑x∈Te I [ĉ(x)=�,c(x)=⊕] Pos−TP

proportion of positives pos= 1
|Te|
∑

x∈Te I [c(x)=⊕] Pos/|Te| P (c(x)=⊕)

proportion of negatives neg = 1
|Te|
∑

x∈Te I [c(x)=�] 1−pos P (c(x)=�)

class ratio clr = pos/neg Pos/Neg

(*) accuracy acc= 1
|Te|
∑

x∈Te I [ĉ(x)= c(x)] P (ĉ(x)= c(x))

(*) error rate err = 1
|Te|
∑

x∈Te I [ĉ(x) 
= c(x)] 1−acc P (ĉ(x) 
= c(x))

true positive rate, sensi-

tivity, recall

tpr =
∑

x∈Te I [ĉ(x)=c(x)=⊕]∑
x∈Te I [c(x)=⊕] TP/Pos P (ĉ(x)=⊕|c(x)=⊕)

true negative rate, speci-

ficity, negative recall

tnr =
∑

x∈Te I [ĉ(x)=c(x)=�]∑
x∈Te I [c(x)=�] TN/Neg P (ĉ(x)=�|c(x)=�)

false positive rate, false

alarm rate

fpr =
∑

x∈Te I [ĉ(x)=⊕,c(x)=�]∑
x∈Te I [c(x)=�] FP/Neg = 1− tnr P (ĉ(x)=⊕|c(x)=�)

false negative rate fnr =
∑

x∈Te I [ĉ(x)=�,c(x)=⊕]∑
x∈Te I [c(x)=⊕] FN/Pos= 1− tpr P (ĉ(x)=�|c(x)=⊕)

precision, confidence prec=
∑

x∈Te I [ĉ(x)=c(x)=⊕]∑
x∈Te I [ĉ(x)=⊕] TP/(TP+FP) P (c(x)=⊕|ĉ(x)=⊕)

Table 2.3. A summary of different quantities and evaluation measures for classifiers on a test set

Te. Symbols starting with a capital letter denote absolute frequencies (counts), while lower-case

symbols denote relative frequencies or ratios. All except those indicated with (*) are defined only

for binary classification. The right-most column specifies the instance space probabilities that

these relative frequencies are estimating.

over all web pages, the probability of selecting a positive is only 0.001, and these are

the only pages on which the reluctant engine makes an error. However, we are not nor-

mally selecting pages from the web uniformly, and hence accuracy is not a meaningful

quantity in this context. To be of any use at all, a search engine should achieve a much

better true positive rate, which usually comes at the expense of a worse true negative

rate (and hence a drop in accuracy).

We conclude from this example that, if the minority class is the class of interest and

very small, accuracy and performance on the majority class are not the right quanti-

ties to optimise. For this reason, an alternative to true negative rate called precision is

usually considered in such cases. Precision is a counterpart to true positive rate in the

following sense: while true positive rate is the proportion of predicted positives among

the actual positives, precision is the proportion of actual positives among the predicted

positives. In Example 2.1 the classifier’s precision on the test set is 60/70 = 85.7%. In
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Figure 2.2. (left) A coverage plot depicting the two contingency tables in Table 2.2. The plot is

square because the class distribution is uniform. (right) Coverage plot for Example 2.1, with a

class ratio clr = 3.

the reluctant search engine example we have not only 0 true positive rate (which in this

context is usually called recall) but also 0 precision, which clearly demonstrates the

problem with a search engine that doesn’t return any answers. Table 2.3 summarises

the evaluation measures introduced in this section.

Visualising classification performance

I will now introduce an important tool for visualising the performance of classifiers

and other models called a coverage plot. If you look at two-class contingency tables

such as the ones depicted in Table 2.2, you realise that, even though the table contains

nine numbers, only four of those can be chosen freely. For instance, once you’ve de-

termined the true/false positives/negatives, the marginals are fixed. Or if you know

the true positives, true negatives, total number of positives and size of the test set, you

can reconstruct all other numbers. Statisticians say that the table has four degrees of

freedom.4

Often we are particularly interested in the following four numbers that completely

determine the contingency table: the number of positives Pos, the number of negatives

Neg, the number of true positives TP and the number of false positives FP. A coverage

plot visualises these four numbers by means of a rectangular coordinate system and a

point. Imagine a rectangle with height Pos and width Neg. Imagine furthermore that

all positives live on the y-axis of this rectangle, and all negatives on the x-axis. We don’t

4More generally, a k-class contingency table has (k+1)2 entries and k2 degrees of freedom.
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Figure 2.3. (left) C1 and C3 both dominate C2, but neither dominates the other. The diagonal

line indicates that C1 and C3 achieve equal accuracy. (right) The same plot with normalised

axes. We can interpret this plot as a merger of the two coverage plots in Figure 2.2, employing

normalisation to deal with the different class distributions. The diagonal line now indicates that

C1 and C3 have the same average recall.

really care how positives and negatives are ordered on their respective axes, as long as

positive predictions come before negative predictions. This gives us enough information

to depict the whole contingency table as a single point within the rectangle (Figure 2.2).

Consider the two classifiers marked C1 and C2 in Figure 2.2 (left). One reason why

coverage plots are so useful is that we can immediately see that C1 is better than C2.

How do we know that? Well, C1 has both more true positives and fewer false positives

than C2, and so is better in both respects. Put differently, C1 achieves better perfor-

mance than C2 on both classes. If one classifier outperforms another classifier on all

classes, the first one is said to dominate the second.5 However, things are not always

that straightforward. Consider a third classifier C3, better than C1 on the positives but

worse on the negatives (Figure 2.3 (left)). Although both C1 and C3 dominate C2, nei-

ther of them dominates the other. Which one we prefer depends on whether we put

more emphasis on the positives or on the negatives.

We can make this a little bit more precise. Notice that the line segment connecting

C1 and C3 has a slope of 1. Imagine travelling up that line: whenever we gain a true

positive, we also lose a true negative (or gain a false positive, which is the same thing).

This doesn’t affect the sum of true positives and true negatives, and hence the accu-

racy is the same wherever we are on the line. It follows that C1 and C3 have the same

accuracy. In a coverage plot, classifiers with the same accuracy are connected by line

segments with slope 1. If true positives and true negatives are equally important, the

5This terminology comes from the field of multi-criterion optimisation. A dominated solution is one that

is not on the Pareto front.
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choice between C1 and C3 is arbitrary; if true positives are more important we should

choose C3, if true negatives are more important we prefer C1.

Now consider Figure 2.3 (right). What I have done here is renormalise the axes by

dividing the x-axis by Neg and the y-axis by Pos, resulting in a plot in the unit square

with true positive rate on the y-axis and false positive rate on the x-axis. In this case

the original coverage plot was already square (Pos=Neg), so the relative position of the

classifiers isn’t affected by the normalisation. However, since the normalised plot will

be square regardless of the shape of the original plot, normalisation is a way to com-

bine differently shaped coverage plots, and thus to combine results on test sets with

different class distributions. Suppose you would normalise Figure 2.2 (right): since C3’s

true and false positive rates are 80% and 40%, respectively (see Example 2.1 on p.56),

its position in a normalised plot is exactly the same as the one labelled C3 in Figure

2.3 (right)! In other words, classifiers occupying different points in different coverage

spaces (e.g., C3 in Figure 2.2 (right) and C3 in Figure 2.3 (left)) can end up in the same

point in a normalised plot.

What is the meaning of the diagonal line connecting C1 and C3 in Figure 2.3 (right)?

It can’t have the same meaning as in the coverage plot, because in a normalised plot we

know the true and false positive rates but not the class distribution, and so we cannot

calculate accuracy (refer back to Equation 2.3 on p.56 if you want to remind yourself

why). The line is defined by the equation tpr = fpr + y0, where y0 is the y-intercept

(the value of tpr where the line intersects the y-axis) . Now consider the average of the

true positive rate and the true negative rate, which we will call average recall, denoted

avg-rec.6 On a line with slope 1 we have avg-rec = (tpr+ tnr)/2 = (tpr + 1− fpr)/2 =
(1+ y0)/2, which is a constant. In a normalised coverage plot, line segments with slope 1

connect classifiers with the same average recall. If recall on the positives and the nega-

tives are equally important, the choice between C1 and C3 is arbitrary; if positive recall

is more important we should choose C3, if negative recall is more important we prefer

C1.

In the literature, normalised coverage plots are referred to as ROC plots, and we

will follow that convention from now on.7 ROC plots are much more common than

coverage plots, but both have their specific uses. Broadly speaking, you should use

a coverage plot if you explicitly want to take the class distribution into account, for

instance when you are working with a single data set. An ROC plot is useful if you want

to combine results from different data sets with different class distributions. Clearly,

there are many connections between the two. Since an ROC plot is always square,

lines of constant average recall (so-called average recall isometrics) do not only have

6Remember that recall is just a different name for true positive rate; negative recall is then the same as

the true negative rate, and average recall is the average of positive recall (or true positive rate) and negative

recall (or true negative rate). It is sometimes called macro-averaged accuracy.
7ROC stands for receiver operating characteristic, a term originating from signal detection theory.
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Figure 2.4. (left) In a coverage plot, accuracy isometrics have a slope of 1, and average recall

isometrics are parallel to the ascending diagonal. (right) In the corresponding ROC plot, average

recall isometrics have a slope of 1; the accuracy isometric here has a slope of 3, corresponding to

the ratio of negatives to positives in the data set.

a slope of 1 but are parallel to the ascending diagonal. The latter property carries over

to coverage plots. To illustrate, in the coverage plot in Figure 2.4, C1 and C2 have the

same accuracy (they are connected by a line segment with slope 1), and C1 and C3 have

the same average recall (they are connected by a line segment parallel to the diagonal).

You can also argue that C2 has both higher accuracy and higher average recall than C3

(why?). In the corresponding ROC plot, the average recall isometric has a slope of 1,

and the accuracy isometric’s slope is Neg/Pos= 1/clr.

2.2 Scoring and ranking

Many classifiers compute scores on which their class predictions are based. For in-

stance, in the Prologue we saw how SpamAssassin calculates a weighted sum from the

rules that ‘fire’ for a particular e-mail. Such scores contain additional information that

can be beneficial in a number of ways, which is why we perceive scoring as a task in its

own right. Formally, a scoring classifier is a mapping ŝ : X → Rk , i.e., a mapping from

the instance space to a k-vector of real numbers. The boldface notation indicates that

a scoring classifier outputs a vector ŝ(x)= (ŝ1(x), . . . , ŝk (x)) rather than a single number;

ŝi (x) is the score assigned to class Ci for instance x. This score indicates how likely it

is that class label Ci applies. If we only have two classes, it usually suffices to consider

the score for only one of the classes; in that case, we use ŝ(x) to denote the score of the

positive class for instance x.

Figure 2.5 demonstrates how a feature tree can be turned into a scoring tree. In

order to obtain a score for each leaf, we first calculate the ratio of spam to ham, which

is 1/2 for the left leaf, 2 for the middle leaf and 4 for the right leaf. Because it is often

more convenient to work with an additive scale, we obtain scores by taking the loga-

rithm of the class ratio (the base of the logarithm is not really important; here we have
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Figure 2.5. (left) A feature tree with training set class distribution in the leaves. (right) A scoring

tree using the logarithm of the class ratio as scores; spam is taken as the positive class.

taken base-2 logarithms to get nice round numbers). Notice that the majority class de-

cision tree corresponds to thresholding ŝ(x) at 0: i.e., predict spam if ŝ(x)> 0 and ham

otherwise.

If we take the true class c(x) as +1 for positive examples and −1 for negative ex-

amples, then the quantity z(x) = c(x)ŝ(x) is positive for correct predictions and nega-

tive for incorrect predictions: this quantity is called the margin assigned by the scor-

ing classifier to the example.8 We would like to reward large positive margins, and

penalise large negative values. This is achieved by means of a so-called loss function

L : R �→ [0,∞) which maps each example’s margin z(x) to an associated loss L(z(x)). We

will assume that L(0)= 1, which is the loss incurred by having an example on the deci-

sion boundary. We furthermore have L(z)≥ 1 for z < 0, and usually also 0≤ L(z)< 1 for

z > 0 (Figure 2.6). The average loss over a test set Te is 1
|Te|
∑

x∈Te L(z(x)).

The simplest loss function is 0–1 loss, which is defined as L01(z) = 1 if z ≤ 0 and

L(z) = 0 if z > 0. The average 0–1 loss is simply the proportion of misclassified test

examples:

1

|Te|
∑

x∈Te
L01(z(x))= 1

|Te|
∑

x∈Te
I [c(x)ŝ(x)≤ 0]= 1

|Te|
∑

x∈Te
I [c(x) 
= ĉ(x)]= err

where ĉ(x) = +1 if ŝ(x) > 0, ĉ(x) = 0 if ŝ(x) = 0, and ĉ(x) = −1 if ŝ(x) < 0. (It is some-

times more convenient to define the loss of examples on the decision boundary as 1/2).

In other words, 0–1 loss ignores the magnitude of the margins of the examples, only

8Remember that in Chapter 1 we talked about the margin of a classifier as the distance between the deci-

sion boundary and the nearest example. Here we use margin in a slightly more general sense: each example

has a margin, not just the nearest one. This will be further explained in Section 7.3.
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Figure 2.6. Loss functions: from bottom-left (i) 0–1 loss L01(z) = 1 if z ≤ 0, and L01(z) = 0 if

z > 0; (ii) hinge loss Lh(z) = (1− z) if z ≤ 1, and Lh(z) = 0 if z > 1; (iii) logistic loss Llog(z) =
log2(1+exp(−z)); (iv) exponential loss Lexp(z)= exp(−z); (v) squared loss Lsq(z)= (1− z)2 (this

can be set to 0 for z > 1, just like hinge loss).

taking their sign into account. As a result, 0–1 loss doesn’t distinguish between scoring

classifiers, as long as their predictions agree. This means that it isn’t actually that use-

ful as a search heuristic or objective function when learning scoring classifiers. Figure

2.6 pictures several loss functions that are used in practice. Except for 0–1 loss, they

are all convex: linear interpolation between any two points on the curve will never re-

sult in a point below the curve. Optimising a convex function is computationally more

tractable.

One loss function that will be of interest later is the hinge loss, which is defined as

Lh(z)= (1−z) if z ≤ 1, and Lh(z)= 0 if z > 1. The name of this loss function comes from

the fact that the loss ‘hinges’ on whether an example’s margin is greater than 1 or not:

if so (i.e., the example is on the correct side of the decision boundary with a distance

of at least 1) the example incurs zero loss; if not, the loss increases with decreasing

margin. In effect, the loss function expresses that it is important to avoid examples

having a margin (much) less than 1, but no additional value is placed on achieving large

positive margins. This loss function is used when training a �support vector machine

(Section 7.3). We will also encounter exponential loss later when we discuss �boosting

in Section 11.2.

Assessing and visualising ranking performance

It should be kept in mind that scores are assigned by a classifier, and are not a prop-

erty inherent to instances. Scores are not estimated from ‘true scores’ – rather, a scor-

ing classifier has to be learned from examples in the form of instances x labelled with
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classes c(x), just as a classifier. (The task where we learn a function f̂ from examples

labelled with true function values (x, f (x)) is called �regression and is covered in Sec-

tion 3.2.) Often it is more convenient to keep the order imposed by scores on a set of

instances, but ignore their magnitudes – this has the advantage, for instance, of being

much less sensitive to outliers. It also means that we do not have to make any assump-

tions about the scale on which scores are expressed: in particular, a ranker does not

assume a particular score threshold for separating positives from negatives. A ranking

is defined as a total order on a set of instances, possibly with ties.9

Example 2.2 (Ranking example). The scoring tree in Figure 2.5 produces the

following ranking: [20+,5−][10+,5−][20+,40−]. Here, 20+ denotes a sequence

of 20 positive examples, and instances in square brackets [. . . ] are tied. By select-

ing a split point in the ranking we can turn the ranking into a classification. In

this case there are four possibilities: (A) setting the split point before the first seg-

ment, and thus assigning all segments to the negative class; (B) assigning the first

segment to the positive class, and the other two to the negative class; (C) assign-

ing the first two segments to the positive class; and (D) assigning all segments to

the positive class. In terms of actual scores, this corresponds to (A) choosing any

score larger than 2 as the threshold; (B) choosing a threshold between 1 and 2;

(C) setting the threshold between −1 and 1; and (D) setting it lower than −1.

Suppose x and x ′ are two instances such that x receives a lower score: ŝ(x)< ŝ(x ′).

Since higher scores express a stronger belief that the instance in question is positive,

this would be fine except in one case: if x is an actual positive and x ′ is an actual neg-

ative. We will call this a ranking error. The total number of ranking errors can then be

expressed as
∑

x∈Te⊕,x′∈Te� I [ŝ(x) < ŝ(x ′)]. Furthermore, for every positive and negative

that receive the same score – a tie – we count half a ranking error. The maximum num-

ber of ranking errors is equal to |Te⊕| · |Te�| = Pos ·Neg, and so the ranking error rate is

defined as

rank-err =
∑

x∈Te⊕,x′∈Te� I [ŝ(x)< ŝ(x ′)]+ 1
2 I [ŝ(x)= ŝ(x ′)]

Pos ·Neg
(2.4)

and analogously the ranking accuracy

rank-acc=
∑

x∈Te⊕,x′∈Te� I [ŝ(x)> ŝ(x ′)]+ 1
2 I [ŝ(x)= ŝ(x ′)]

Pos ·Neg
= 1− rank-err (2.5)

9A total order with ties should not be confused with a partial order (see Background 2.1 on p.51). In a total

order with ties (which is really a total order on equivalence classes), any two elements are comparable, either

in one direction or in both. In a partial order some elements are incomparable.
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Ranking accuracy can be seen as an estimate of the probability that an arbitrary positive–

negative pair is ranked correctly.

Example 2.3 (Ranking accuracy). We continue the previous example consider-

ing the scoring tree in Figure 2.5, with the left leaf covering 20 spam and 40 ham,

the middle leaf 10 spam and 5 ham, and the right leaf 20 spam and 5 ham. The

5 negatives in the right leaf are scored higher than the 10 positives in the middle

leaf and the 20 positives in the left leaf, resulting in 50+100= 150 ranking errors.

The 5 negatives in the middle leaf are scored higher than the 20 positives in the

left leaf, giving a further 100 ranking errors. In addition, the left leaf makes 800

half ranking errors (because 20 positives and 40 negatives get the same score), the

middle leaf 50 and the right leaf 100. In total we have 725 ranking errors out of a

possible 50 ·50= 2500, corresponding to a ranking error rate of 29% or a ranking

accuracy of 71%.

The coverage plots and ROC plots introduced in the previous section for visualising

classifier performance provide an excellent tool for visualising ranking performance

too. If Pos positives and Neg negatives are plotted on the vertical and horizontal axes,

respectively, then each positive–negative pair occupies a unique ‘cell’ in this plot. If we

order the positives and negatives on decreasing score, i.e., examples with higher scores

are closer to the origin, then we can clearly distinguish the correctly ranked pairs at

the bottom right, the ranking errors at the top left, and the ties in between (Figure 2.7).

The number of cells in each area gives us the number of correctly ranked pairs, ranking

errors and ties, respectively. The diagonal lines cut the ties area in half, so the area

below those lines corresponds to the ranking accuracy multiplied by Pos ·Neg, and the

area above corresponds to the ranking error rate times that same factor.

Concentrating on those diagonal lines gives us the piecewise linear curve shown in

Figure 2.7 (right). This curve, which we will call a coverage curve, can be understood

as follows. Each of the points marked A, B, C and D specifies the classification per-

formance, in terms of true and false positives, achieved by the corresponding ranking

split points or score thresholds from Example 2.2. To illustrate, C would be obtained by

a score threshold of 0, leading to TP2= 20+10= 30 true positives and FP2= 5+5= 10

false positives. Similarly, B would be obtained by a higher threshold of 1.5, leading to

TP1 = 20 true positives and FP1 = 5 false positives. Point A would result if we set the

threshold unattainably high, and D if we set the threshold trivially low.

Why are these points connected by straight lines? How can we interpolate between,

say, points C and D? Suppose we set the threshold exactly at −1, which is the score
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Figure 2.7. (left) Each cell in the grid denotes a unique pair of one positive and one negative

example: the green cells indicate pairs that are correctly ranked by the classifier, the red cells

represent ranking errors, and the orange cells are half-errors due to ties. (right) The coverage

curve of a tree-based scoring classifier has one line segment for each leaf of the tree, and one

(FP,TP) pair for each possible threshold on the score.

assigned by the left leaf of the tree. The question is now what class we predict for the

20 positives and 40 negatives that filter down to that leaf. It would seem reasonable to

decide this by tossing a fair coin, leading to half of the positives receiving a positive pre-

diction (on average) and half of them a negative one, and similar for the negatives. The

total number of true positives is then 30+20/2= 40, and the number of false positives

is 10+40/2= 30. In other words, we land exactly in the middle of the CD line segment.

We can apply the same procedure to achieve performance half-way BC, by setting the

threshold at 1 and tossing the same fair coin to obtain uniformly distributed predic-

tions for the 10 positives and 5 negatives in the middle leaf, leading to 20+10/2 = 25

true positives and 5+ 5/2 = 7.5 false positives (of course, we cannot achieve a non-

integer number of false positives in any trial, but this number represents the expected

number of false positives over many trials). And what’s more, by biasing the coin to-

wards positive or negative predictions we can achieve expected performance anywhere

on the line.

More generally, a coverage curve is a piecewise linear curve that rises monotoni-

cally from (0,0) to (Neg,Pos) – i.e., TP and FP can never decrease if we decrease the

decision threshold. Each segment of the curve corresponds to an equivalence class of

the instance space partition induced by the model in question (e.g., the leaves of a fea-

ture tree). Notice that the number of segments is never more than the number of test

instances. Furthermore, the slope of each segment is equal to the ratio of positive to

negative test instances in that equivalence class. For instance, in our example the first

segment has a slope of 4, the second segment slope 2, and the third segment slope 1/2
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Figure 2.8. (left) A coverage curve obtained from a test set with class ratio clr = 1/2. (right) The

corresponding ROC curve is the same as the one corresponding to the coverage curve in Figure

2.7 (right).

— exactly the scores assigned in each leaf of the tree! This is not true in general, since

the coverage curve depends solely on the ranking induced by the scores, not on the

scores themselves. However, it is not a coincidence either, as we shall see in the next

section on class probability estimation.

An ROC curve is obtained from a coverage curve by normalising the axes to [0,1].

This doesn’t make much of a difference in our running example, but in general cover-

age curves can be rectangular whereas ROC curves always occupy the unit square. One

effect this has is that slopes are multiplied by Neg/Pos= 1/clr. Furthermore, while in a

coverage plot the area under the coverage curve gives the absolute number of correctly

ranked pairs, in an ROC plot the area under the ROC curve is the ranking accuracy as

defined in Equation 2.5 on p.64. For that reason people usually write AUC for ‘Area

Under (ROC) Curve’, a convention I will follow.

Example 2.4 (Class imbalance). Suppose we feed the scoring tree in Figure 2.5

on p.62 an extended test set, with an additional batch of 50 negatives. The added

negatives happen to be identical to the original ones, so the net effect is that the

number of negatives in each leaf doubles. As a result the coverage curve changes

(because the class ratio changes), but the ROC curve stays the same (Figure 2.8).

Note that the AUC stays the same as well: while the classifier makes twice as

many ranking errors, there are also twice as many positive–negative pairs, so the

ranking error rate doesn’t change.

Let us now consider an example of a coverage curve for a grading classifier. Figure

2.9 (left) shows a linear classifier (the decision boundary is denoted B) applied to a
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Figure 2.9. (left) A linear classifier induces a ranking by taking the signed distance to the decision

boundary as the score. This ranking only depends on the orientation of the decision boundary:

the three lines result in exactly the same ranking. (right) The grid of correctly ranked positive–

negative pairs (in green) and ranking errors (in red).

small data set of five positive and five negative examples, achieving an accuracy of 0.80.

We can derive a score from this linear classifier by taking the distance of an example

from the decision boundary; if the example is on the negative side we take the negative

distance. This means that the examples are ranked in the following order: p1 – p2 – p3

– n1 – p4 – n2 – n3 – p5 – n4 – n5. This ranking incurs four ranking errors: n1 before p4,

and n1, n2 and n3 before p5. Figure 2.9 (right) visualises these four ranking errors in

the top-left corner. The AUC of this ranking is 21/25= 0.84.

From this grid we obtain the coverage curve in Figure 2.10. Because of its stepwise

character, this curve looks quite different from the coverage curves for scoring trees

that we saw earlier in this section. The main reason is the absence of ties, which means

that all segments in the curve are horizontal or vertical, and that there are as many

segments as examples. We can generate this stepwise curve from the ranking as fol-

lows: starting in the lower left-hand corner, we go up one step if the next example in

the ranking is positive, and right one step if the next example is negative. The result is

a curve that goes three steps up (for p1–3), one step to the right (for n1), one step up

(p4), two steps to the right (n2–3), one step up (p5), and finally two steps to the right

(n4–5).

We can actually use the same procedure for grouping models if we handle ties as

follows: in case of a tie between p positive examples and n negative examples, we go

p steps up and at the same time n steps to the right. Looking back at Figure 2.7 on

p.66, you will see that this is exactly what happens in the diagonal segments spanning

the orange rectangles which arise as a result of the ties in the leaves of the decision

tree. Thus, the principles underlying coverage and ROC curves are the same for both



2.2 Scoring and ranking 69

grouping and grading models, but the curves themselves look quite different in each

case. Grouping model ROC curves have as many line segments as there are instance

space segments in the model; grading models have one line segment for each example

in the data set. This is a concrete manifestation of something I mentioned in the Pro-

logue: grading models have a much higher ‘resolution’ than grouping models; this is

also called the model’s refinement.

Notice the three points in Figure 2.10 labelled A, B and C. These points indicate the

performance achieved by the decision boundaries with the same label in Figure 2.9. As

an illustration, the middle boundary B misclassifies one out of five positives (tpr = 0.80)

and one out of five negatives (fpr = 0.80). Boundary A doesn’t misclassify any negatives,

and boundary C correctly classifies all positives. In fact, while they should all have

the same orientation, their exact location is not important, as long as boundary A is

between p3 and n1, boundary B is between p4 and n2, and boundary C is between

p5 and n4. There are good reasons why I chose exactly these three boundaries, as we

shall see shortly. For the moment, observe what happens if we use all three boundaries

to turn the linear model into a grouping model with four segments: the area above A,

the region between A and B, the bit between B and C, and the rest below C. The result

is that we no longer distinguish between n1 and p4, nor between n2–3 and p5. The

ties just introduced change the coverage curve to the dotted segments in Figure 2.10.

Notice that this results in a larger AUC of 0.90. Thus, by decreasing a model’s refinement

we sometimes achieve better ranking performance. Training a model is not just about

amplifying significant distinctions, but also about diminishing the effect of misleading

distinctions.

Turning rankers into classifiers

I mentioned previously that the main difference between rankers and scoring classi-

fiers is that a ranker only assumes that a higher score means stronger evidence for the

positive class, but otherwise makes no assumptions about the scale on which scores

are expressed, or what would be a good score threshold to separate positives from neg-

atives. We will now consider the question how to obtain such a threshold from a cov-

erage curve or ROC curve.

The key concept is that of the accuracy isometric. Recall that in a coverage plot

points of equal accuracy are connected by lines with slope 1. All we need to do, there-

fore, is to draw a line with slope 1 through the top-left point (which is sometimes called

ROC heaven) and slide it down until we touch the coverage curve in one or more points.

Each of those points achieves the highest accuracy possible with that model. In Figure

2.10 this method would identify points A and B as the points with highest accuracy

(0.80). They achieve this in different ways: e.g., model A is more conservative on the

positives.
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Figure 2.10. The coverage curve of the linear classifier in Figure 2.9. The points labelled A, B

and C indicate the classification performance of the corresponding decision boundaries. The

dotted lines indicate the improvement that can be obtained by turning the grading classifier

into a grouping classifier with four segments.

A similar procedure can be followed with ROC plots, as long as you keep in mind

that all slopes have to be multiplied by the reciprocal of the class ratio, 1/clr =Neg/Pos.

Example 2.5 (Tuning your spam filter). You have carefully trained your

Bayesian spam filter, and all that remains is setting the decision threshold.

You select a set of six spam and four ham e-mails and collect the scores assigned

by the spam filter. Sorted on decreasing score these are 0.89 (spam), 0.80 (spam),

0.74 (ham), 0.71 (spam), 0.63 (spam), 0.49 (ham), 0.42 (spam), 0.32 (spam), 0.24

(ham), and 0.13 (ham). If the class ratio of 3 spam against 2 ham is represen-

tative, you can select the optimal point on the ROC curve using an isometric

with slope 2/3. As can be seen in Figure 2.11, this leads to putting the decision

boundary between the sixth spam e-mail and the third ham e-mail, and we can

take the average of their scores as the decision threshold (0.28).

An alternative way of finding the optimal point is to iterate over all possible

split points – from before the top ranked e-mail to after the bottom one – and

calculate the number of correctly classified examples at each split: 4 – 5 – 6 – 5 –

6 – 7 – 6 – 7 – 8 – 7 – 6. The maximum is achieved at the same split point, yielding

an accuracy of 0.80. A useful trick to find out which accuracy an isometric in an

ROC plot represents is to intersect the isometric with the descending diagonal.
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Figure 2.11. Selecting the optimal point on an ROC curve. The top dotted line is the accuracy

isometric, with a slope of 2/3. The lower isometric doubles the value (or prevalence) of negatives,

and allows a choice of thresholds. By intersecting the isometrics with the descending diagonal

we can read off the achieved accuracy on the y-axis.

Since accuracy is a weighted average of the true positive and true negative rates,

and since these are the same in a point on the descending diagonal, we can read

off the corresponding accuracy value on the y-axis.

If the class distribution in the data is not representative, we can simply adjust the

slope of the isometric. For example, if ham is in fact twice as prevalent, we use an

isometric with slope 4/3. In the previous example this leads to three optimal points

on the ROC curve.10 Even if the class ratio in the data is representative, we may have

other reasons to assign different weights to the classes. To illustrate, in the spam e-mail

situation our spam filter may discard the false positives (ham e-mails misclassified as

spam) so we may want to drive the false positive rate down by assigning a higher weight

to the negatives (ham). This is often expressed as a cost ratio c = cFN/cFP of the cost of

false negatives in proportion to the cost of false positives, which in this case would

be set to a value smaller than 1. The relevant isometrics then have a slope of 1/c in a

coverage plot, and 1/(c · clr) in an ROC plot. The combination of cost ratio and class

ratio gives a precise context in which the classifier is deployed and is referred to as the

10It seems reasonable to choose the middle of these three points, leading to a threshold of 0.56. An alter-

native is to treat all e-mails receiving a score in the interval [0.28,0.77] as lying on the decision boundary, and

to randomly assign a class to those e-mails.
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operating condition.

If the class or cost ratio is highly skewed, this procedure may result in a classifier

that assigns the same class to all examples. For instance, if negatives are 1 000 times

more prevalent than positives, accuracy isometrics are nearly vertical, leading to an

unattainably high decision threshold and a classifier that classifies everything as neg-

ative. Conversely, if the profit of one true positive is 1 000 times the cost of a false

positive, we would classify everything as positive – in fact, this is the very principle

underlying spam e-mail! However, often such one-size-fits-all behaviour is unaccept-

able, indicating that accuracy is not the right thing to optimise here. In such cases we

should use average recall isometrics instead. These run parallel to the ascending diag-

onal in both coverage and ROC plots, and help to achieve similar performance on both

classes.

The procedure just described learns a decision threshold from labelled data by

means of the ROC curve and the appropriate accuracy isometric. This procedure is

often preferable over fixing a decision threshold in advance, particularly if scores are

expressed on an arbitrary scale – for instance, this would provide a way to finetune the

SpamAssassin decision threshold to our particular situation and preferences. Even if

the scores are probabilities, as in the next section, these may not be sufficiently well

estimated to warrant a fixed threshold of 0.5.

2.3 Class probability estimation

A class probability estimator – or probability estimator in short – is a scoring classifier

that outputs probability vectors over classes, i.e., a mapping p̂ : X → [0,1]k . We write

p̂(x)= (p̂1(x), . . . , p̂k (x)
)
, where p̂i (x) is the probability assigned to class Ci for instance

x, and
∑k

i=1 p̂i (x)= 1. If we have only two classes, the probability associated with one

class is 1 minus the probability of the other class; in that case, we use p̂(x) to denote

the estimated probability of the positive class for instance x. As with scoring classifiers,

we usually do not have direct access to the true probabilities pi (x).

One way to understand the probabilities p̂i (x) is as estimates of the probability

PC (c(x ′) = Ci |x ′ ∼ x), where x ′ ∼ x stands for ‘x ′ is similar to x’. In other words, how

frequent are instances of this class among instances similar to x? The intuition is that

the more (or less) frequent they are, the more (or less) confident we should be in our

belief that x belongs to that class as well. What we mean with similarity in this context

will depend on the models we are considering – we will illustrate it here by means of a

few two-class examples. First, assume a situation in which any two instances are sim-

ilar to each other. We then have PC (c(x ′) = ⊕|x ′ ∼ x) = PC (c(x ′) = ⊕) which is simply

estimated by the proportion pos of positives in our data set (I am going to drop the sub-

script C from now on). In other words, in this scenario we predict p̂(x)= pos regardless
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Figure 2.12. A probability estimation tree derived from the feature tree in Figure 1.4.

of whether we know anything about x’s true class. At the other extreme, consider a situ-

ation in which no two instances are similar unless they are the same, i.e., x ′ ∼ x if x ′ = x,

and x ′ 
∼ x otherwise. In this case we have P (c(x ′) = ⊕|x ′ ∼ x) = P (c(x) = ⊕), which –

because x is fixed – is 1 if c(x)=⊕ and 0 otherwise. Put differently, we predict p̂(x)= 1

for all known positives and p̂(x)= 0 for all known negatives, but we can’t generalise this

to unseen instances.

A feature tree allows us to strike a balance between these extreme and simplistic

scenarios, using the similarity relation∼T associated with feature tree T : x ′ ∼T x if, and

only if, x and x ′ are assigned to the same leaf of the tree. In each leaf we then predict

the proportion of positives assigned to that leaf. For example, in the right-most leaf

in Figure 1.4 on p.32 the proportion of positives is 40/50 = 0.80, and thus we predict

p̂(x) = 0.80 for all instances x assigned to that leaf; similarly for the other two leaves

(Figure 2.12). If we threshold p̂(x) at 0.5 (i.e., predict spam if the spam probability

is 0.5 or more and predict ham otherwise), we get the same classifier as obtained by

predicting the majority class in each leaf of the feature tree.

Assessing class probability estimates

As with classifiers, we can now ask the question of how good these class probability

estimators are. A slight complication here is that, as already remarked, we do not have

access to the true probabilities. One trick that is often applied is to define a binary

vector (I [c(x)=C1], . . . , I [c(x)=Ck ]), which has the i -th bit set to 1 if x’s true class is Ci

and all other bits set to 0, and use these as the ‘true’ probabilities. We can then define

the squared error (SE) of the predicted probability vector p̂(x)= (p̂1(x), . . . , p̂k (x)
)

as

SE(x)= 1

2

k∑
i=1

(p̂i (x)− I [c(x)=Ci ])2 (2.6)
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and the mean squared error (MSE) as the average squared error over all instances in

the test set:

MSE(Te)= 1

|Te|
∑

x∈Te
SE(x) (2.7)

This definition of error in probability estimates is often used in forecasting theory where

it is called the Brier score. The factor 1/2 in Equation 2.6 ensures that the squared er-

ror per example is normalised between 0 and 1: the worst possible situation is that the

wrong class is predicted with probability 1, which means two ‘bits’ are wrong. For two

classes this reduces to a single term (p̂(x)− I [c(x) = ⊕])2 only referring to the positive

class. Notice that, if a class probability estimator is ‘categorical’ – i.e., it assigns proba-

bility 1 to one class and probability 0 to the rest – it is effectively a classifier, and MSE

reduces to accuracy as defined in Section 2.1.

Example 2.6 (Squared error). Suppose one model predicts (0.70,0.10,0.20) for

a particular example x in a three-class task, while another appears much more

certain by predicting (0.99,0,0.01). If the first class is the actual class, the second

prediction is clearly better than the first: the SE of the first prediction is ((0.70−
1)2+(0.10−0)2+(0.20−0)2)/2= 0.07, while for the second prediction it is ((0.99−
1)2+(0−0)2+(0.01−0)2)/2= 0.0001. The first model gets punished more because,

although mostly right, it isn’t quite sure of it.

However, if the third class is the actual class, the situation is reversed: now

the SE of the first prediction is ((0.70−0)2+ (0.10−0)2+ (0.20−1)2)/2= 0.57, and

of the second ((0.99−0)2+ (0−0)2+ (0.01−1)2)/2= 0.98. The second model gets

punished more for not just being wrong, but being presumptuous.

Returning to the probability estimation tree in Figure 2.12, we calculate the squared

error per leaf as follows (left to right):

SE1 = 20(0.33−1)2+40(0.33−0)2 = 13.33

SE2 = 10(0.67−1)2+5(0.67−0)2 = 3.33

SE3 = 20(0.80−1)2+5(0.80−0)2 = 4.00

which leads to a mean squared error of MSE= 1
100 (SE1+SE2+SE3)= 0.21. An interesting

question is whether we can change the predicted probabilities in each leaf to obtain a

lower mean squared error. It turns out that this is not possible: predicting probabilities

obtained from the class distributions in each leaf is optimal in the sense of lowest MSE.



2.3 Class probability estimation 75

For instance, changing the predicted probabilities in the left-most leaf to 0.40 for spam

and 0.60 for ham, or 0.20 for spam and 0.80 for ham, results in a higher squared error:

SE′1 = 20(0.40−1)2+40(0.40−0)2 = 13.6

SE′′1 = 20(0.20−1)2+40(0.20−0)2 = 14.4

The reason for this becomes obvious if we rewrite the expression for two-class

squared error of a leaf as follows, using the notation n⊕ and n� for the numbers of

positive and negative examples in the leaf:

n⊕(p̂−1)2+n�p̂2 = (n⊕+n�)p̂2−2n⊕p̂+n⊕ = (n⊕+n�)
[
p̂2−2ṗ p̂+ ṗ

]
= (n⊕+n�)

[
(p̂− ṗ)2+ ṗ(1− ṗ)

]
where ṗ = n⊕/(n⊕+n�) is the relative frequency of the positive class among the exam-

ples covered by the leaf, also called the empirical probability. As the term ṗ(1− ṗ) does

not depend on the predicted probability p̂, we see immediately that we achieve lowest

squared error in the leaf if we assign p̂ = ṗ.

Empirical probabilities are important as they allow us to obtain or finetune proba-

bility estimates from classifiers or rankers. If we have a set S of labelled examples, and

the number of examples in S of class Ci is denoted ni , then the empirical probability

vector associated with S is ṗ(S) = (n1/|S|, . . . ,nk /|S|). In practice, it is almost always a

good idea to smooth these relative frequencies to avoid issues with extreme values (0

or 1). The most common way to do this is to set

ṗi (S)= ni +1

|S|+k
(2.8)

This is called the Laplace correction, after the French mathematician Pierre-Simon

Laplace, who introduced it for the case k = 2 (also known as Laplace’s rule of suc-

cession). In effect, we are adding uniformly distributed pseudo-counts to each of the

k alternatives, reflecting our prior belief that the empirical probabilities will turn out

uniform.11 We can also apply non-uniform smoothing by setting

ṗi (S)= ni +m ·πi

|S|+m
(2.9)

This smoothing technique, known as the m-estimate, allows the choice of the number

of pseudo-counts m as well as the prior probabilities πi . The Laplace correction is a

special case of the m-estimate with m = k and πi = 1/k.

If all elements of S receive the same predicted probability vector p̂(S) – which hap-

pens if S is a segment of a grouping model – then a similar derivation to the one above

11This can be modelled mathematically by a prior probability distribution known as a Dirichlet prior.
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allows us to write the total incurred squared error over S in terms of estimated and

empirical probabilities as

SE(S)=∑
x∈S

SE(x)=∑
x∈S

1

2

k∑
i=1

(p̂i (x)− I [c(x)=Ci ])2

= 1

2
|S|

k∑
i=1

(p̂i (S)− ṗi (S))2+ 1

2
|S|

k∑
i=1

(ṗi (S)(1− ṗi (S))

The first term of the final expression is called the calibration loss, and measures squared

error with respect to the empirical probabilities. It can be reduced to 0 in grouping

models where we are free to choose the predicted probabilities for each segment, as

in probability estimation trees. Models with low calibration loss are said to be well-

calibrated. The second term is called the refinement loss; this depends only on the

empirical probabilities, and is smaller if they are less uniform.

This analysis suggests that the best way of obtaining probability estimates is from

empirical probabilities, obtained from the training set or from another set of labelled

examples specifically set aside for the purpose. However, there are two issues we need

to consider here. The first is that with some models we must make sure that the pre-

dicted probabilities obey the ranking imposed by the model. The second is that with

grading models we don’t have immediate access to empirical probabilities, since each

example tends to get assigned an equivalence class of its own. We will now discuss this

in a bit more detail.

Turning rankers into class probability estimators

Consider again Example 2.5 on p.70, and imagine the scores are not probabilities but

on some unknown scale, so that the spam filter is a ranker rather than a class proba-

bility estimator. Since each test example receives a different score, the ‘empirical prob-

abilities’ are either 0 (for negative examples) or 1 (for positive examples), leading to a

sequence of ṗ-values of 1 – 1 – 0 – 1 – 1 – 0 – 1 – 1 – 0 – 0 in order of decreasing scores. The

obvious problem is that these ṗ-values do not obey the order imposed by the scores,

and so cannot be used directly to obtain probability estimates. Smoothing the empiri-

cal probabilities using Laplace correction doesn’t really address this problem, since all

it does is replace 0 with 1/3 and 1 with 2/3. We need a different idea.

Looking at Figure 2.11, we see that ṗ = 1 corresponds to a vertical segment of the

ROC curve, and ṗ = 0 to a horizontal segment. The problem we have is caused by

having a vertical segment following a horizontal one, or, more generally, a segment

with steeper slope following a flatter segment. We will call a sequence of segments

with increasing slope a concavity, as it forms a ‘dent’ in the ROC curve. A curve without

concavities is a convex ROC curve. Our curve has two concavities: one formed by the

third, fourth and fifth example, and the other by the sixth, seventh and eighth example.
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Figure 2.13. (left) The solid red line is the convex hull of the dotted ROC curve. (right) The cor-

responding calibration map in red: the plateaus correspond to several examples being mapped

to the same segment of the convex hull, and linear interpolation between example scores occurs

when we transition from one convex hull segment to the next. A Laplace-corrected calibration

map is indicated by the dashed line in blue: Laplace smoothing compresses the range of cali-

brated probabilities but can sometimes affect the ranking.

Suppose now that the third to the fifth example all receive the same score, say 0.7; and

the sixth to the eight example are also tied, say at 0.4. In that case the ROC curve would

have six segments, with empirical probabilities 1 – 1 – 2/3 – 2/3 – 0 – 0. As we see,

the ṗ-values are now decreasing with the scores; in other words, the concavities have

disappeared and the ROC curve has become convex.

More generally speaking, concavities in ROC curves can be remedied by combining

segments through tied scores. This is achieved by identifying what are sometimes called

adjacent violators. For instance, in the sequence 1 – 1 – 0 – 1 – 1 – 0 – 1 – 1 – 0 – 0,

the third and fourth example are adjacent violators, because they violate the rule that

scores should be decreasing from left to right in the sequence (or, mathematically more

accurate, they should be non-increasing). This is remedied by assigning them both

their average score, leading to the sequence 1 – 1 – [1/2 – 1/2] – 1 – 0 – 1 – 1 – 0 – 0.

The newly introduced segment now forms an adjacent violator pair with the fourth

example, so we give them all their mean score, leading to the sequence 1 – 1 – [2/3 –

2/3 – 2/3] – 0 – 1 – 1 – 0 – 0.12 The second 0 – 1 – 1 concavity is treated identically, and

the final sequence is 1 – 1 – [2/3 – 2/3 – 2/3] – [2/3 – 2/3 – 2/3] – 0 – 0.

The result is illustrated in Figure 2.13. On the left, we see how the two concavi-

ties are replaced with two diagonal line segments with the same slope. These diagonal

segments coincide with the accuracy isometric that gives the three ‘outermost’ points

12These two steps can be combined into one: once a pair of adjacent violators is found, we can scan to the

left and right to include examples with the same score as the left and right example in the pair, respectively.
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involved in the concavities the same accuracy (Figure 2.11 on p.71). Jointly, the red seg-

ments constitute the convex hull of the ROC curve, which is the unique convex curve

through the outermost points of the original ROC curve. The convex hull has a higher

AUC than the original curve, because it replaces (some of) the ranking errors of the

original curve with half-errors due to ties. In our example the original ranking incurs

6 out of 24 ranking errors (AUC = 0.75), while the convex hull turns all of these into

half-errors (AUC= 0.83).

Once we have determined the convex hull, we can use the empirical probabilities

in each segment of the convex hull as calibrated probabilities. Figure 2.13 (right) shows

the resulting calibration map, which is a piecewise linear, non-decreasing curve map-

ping original scores on the x-axis to calibrated probabilities on the y-axis. Also shown

is an alternative calibration map giving probability estimates after Laplace correction:

for the given sequence these are 2/3 – 2/3 – [3/5 – 3/5 – 3/5] – [3/5 – 3/5 – 3/5] – 1/3 –

1/3, giving rise to a much compressed range of probability estimates.

Let’s now look at this process from the point of view of mean squared error, calibra-

tion and refinement. The original scores had a mean squared error of 1
10 [(0.89−1)2+

(0.80−1)2+(0.74−0)2+(0.71−1)2+(0.63−1)2+(0.49−0)2+(0.42−1)2+(0.32−1)2+(0.24−
0)2+ (0.13−0)2] = 0.19. Notice that this is entirely incurred by the calibration loss, as

all empirical probabilities are either 0 or 1 and thus the refinement loss is zero. The

calibrated scores have a mean squared error of 1
10 [(1−1)2+(1−1)2+(0.67−0)2+(0.67−

1)2+(0.67−1)2+(0.67−0)2+(0.67−1)2+(0.67−1)2+(0−0)2+(0−0)2]= 0.13. Now the

entire mean squared error is incurred by refinement loss as the estimated probabilities

are equal to the empirical ones in each segment by construction. We have traded an in-

crease in refinement loss for a decrease in calibration loss; since the latter is larger than

the former, the overall error decreases. The increase in refinement loss comes from the

construction of the convex hull, which introduces diagonal segments. The technical

term for this process of obtaining calibrated scores through the convex hull of the ROC

curve is isotonic calibration, as the mathematical problem underlying it is called iso-

tonic regression. Some caution is in order when applying isotonic calibration, as it is

easy to overfit the data in this process. In the calibration map in Figure 2.13 (right),

both the horizontal transition points and the vertical levels are directly obtained from

the given data, and may not generalise well to unseen data. This is why it is advisable to

apply the Laplace correction to the empirical probabilities, even though it will increase

the calibration loss on the given data.
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2.4 Binary classification and related tasks: Summary and fur-

ther reading

In this chapter we have looked at binary classification, a ubiquitous task that forms the

starting point of a lot of work in machine learning. Although we haven’t talked much

about learning in this chapter, my philosophy is that you will reach a better under-

standing of machine learning models and algorithms if you first study the tasks that

these models are meant to address.

� In Section 2.1 we defined the binary classification task and introduced an impor-

tant tool to assess performance at such a task, namely the two-by-two contin-

gency table. A wide range of performance indicators are derived from the counts

in a contingency table. I introduced the coverage plot, which visualises a con-

tingency table as a rectangle with size Pos up and size Neg across, and within

that rectangle a point with y-coordinate TP and x-coordinate FP. We can visu-

alise several models evaluated on the same data set by several points, and use

the fact that accuracy is constant along line segments with slope 1 to visually

rank these classifiers on accuracy. Alternatively, we can normalise the rectangle

to be a unit square with true and false positive rate on the axes. In this so-called

ROC space, line segments with slope 1 (i.e., those parallel to the ascending diag-

onal) connect points with the same average recall (sometimes also called macro-

accuracy). The use of these kinds of plot in machine learning was pioneered by

Provost and Fawcett (2001). Unnormalised coverage plots were introduced by

Fürnkranz and Flach (2003).

� Section 2.2 considered the more general task of calculating a score for each ex-

ample (or a vector of scores in the general case of more than two classes). While

the scale on which scores are expressed is unspecified, it is customary to put the

decision threshold at ŝ(x) = 0 and let the sign of the score stand for the predic-

tion (positive or negative). Multiplying the score with the true class gives us the

margin, which is positive for a correct prediction and negative for an incorrect

one. A loss function determines how much negative margins are penalised and

positive margins rewarded. The advantage of working with convex and continu-

ously differentiable ‘surrogate’ loss functions (rather than with 0–1 loss, which is

the loss function we ultimately want to optimise) is that this often leads to more

tractable optimisation problems.

� Alternatively, we can ignore the scale on which scores are measured altogether

and only work with their order. Such a ranker is visualised in coverage or ROC

space by a piecewise continuous curve. For grouping models the line segments

in these curves correspond to instance space segments (e.g., the leaves of a tree
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model) whereas for grading models there is a segment for each unique score as-

signed by the model. The area under the ROC curve gives the ranking accuracy

(an estimate of the probability that a random positive is ranked before a ran-

dom negative) and is known in statistics as the Wilcoxon-Mann-Whitney statis-

tic These curves can be used to find a suitable operating point by translating

the operating condition (class and cost distribution) into an isometric in ROC or

coverage space. The origins of ROC curves are in signal detection theory (Egan,

1975); accessible introductions can be found in (Fawcett, 2006; Flach, 2010b).

� In Section 2.3 we looked at scoring models whose scores can be interpreted as

estimates of the probability that the instance belongs to a particular class. Such

models were pioneered in forecasting theory by Brier (1950) and Murphy and

Winkler (1984), among others. We can assess the quality of class probability es-

timates by comparing them to the ‘ideal’ probabilities (1 for a positive, 0 for a

negative) and taking mean squared error. Since there is no reason why the true

probabilities should be categorical this is quite a crude assessment, and decom-

posing it into calibration loss and refinement loss provides useful additional in-

formation. We have also seen a very useful trick for smoothing relative frequency

estimates of probabilities by adding pseudo-counts, either uniformly distributed

(Laplace correction) or according to a chosen prior (m-estimate). Finally, we

have seen how we can use the ROC convex hull to obtain calibrated class prob-

ability estimates. The approach has its roots in isotonic regression (Best and

Chakravarti, 1990) and was introduced to the machine learning community by

Zadrozny and Elkan (2002). Fawcett and Niculescu-Mizil (2007) and Flach and

Matsubara (2007) show that the approach is equivalent to calibration by means

of the ROC convex hull. (Note that in this chapter we have seen two different uses

of the term ‘convex’: one in relation to loss functions, where convexity means

that linear interpolation between any two points on the curve depicting the loss

function will never result in a point below the curve; and the other in relation to

the ROC convex hull, where it refers to the linearly interpolated boundary of a

convex set which envelopes all points in the set.)

�



CHAPTER 3

Beyond binary classification

T
HE PREVIOUS CHAPTER introduced binary classification and associated tasks such as

ranking and class probability estimation. In this chapter we will go beyond these basic

tasks in a number of ways. Section 3.1 discusses how to handle more than two classes.

In Section 3.2 we consider the case of a real-valued target variable. Section 3.3 is de-

voted to various forms of learning that are either unsupervised or aimed at learning

descriptive models.

3.1 Handling more than two classes

Certain concepts are fundamentally binary. For instance, the notion of a coverage

curve does not easily generalise to more than two classes. We will now consider general

issues related to having more than two classes in classification, scoring and class prob-

ability estimation. The discussion will address two issues: how to evaluate multi-class

performance, and how to build multi-class models out of binary models. The latter

is necessary for some models, such as linear classifiers, that are primarily designed to

separate two classes. Other models, including decision trees, handle any number of

classes quite naturally.

81
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Multi-class classification

Classification tasks with more than two classes are very common. For instance, once

a patient has been diagnosed as suffering from a rheumatic disease, the doctor will

want to classify him or her further into one of several variants. If we have k classes,

performance of a classifier can be assessed using a k-by-k contingency table. Assessing

performance is easy if we are interested in the classifier’s accuracy, which is still the

sum of the descending diagonal of the contingency table, divided by the number of

test instances. However, as before, this can obscure differences in performance on

different classes, and other quantities may be more meaningful.

Example 3.1 (Performance of multi-class classifiers). Consider the following

three-class confusion matrix (plus marginals):

Predicted

15 2 3 20

Actual 7 15 8 30

2 3 45 50

24 20 56 100

The accuracy of this classifier is (15+15+45)/100 = 0.75. We can calculate per-

class precision and recall: for the first class this is 15/24 = 0.63 and 15/20 = 0.75

respectively, for the second class 15/20= 0.75 and 15/30= 0.50, and for the third

class 45/56 = 0.80 and 45/50 = 0.90. We could average these numbers to obtain

single precision and recall numbers for the whole classifier, or we could take a

weighted average taking the proportion of each class into account. For instance,

the weighted average precision is 0.20 ·0.63+0.30 ·0.75+0.50 ·0.80= 0.75. Notice

that we still have that accuracy is weighted average per-class recall, as in the two-

class case (see Example 2.1 on p.56).

Another possibility is to perform a more detailed analysis by looking at pre-

cision and recall numbers for each pair of classes: for instance, when distin-

guishing the first class from the third precision is 15/17 = 0.88 and recall is

15/18 = 0.83, while distinguishing the third class from the first these numbers

are 45/48= 0.94 and 45/47= 0.96 (can you explain why these numbers are much

higher in the latter direction?).

Imagine now that we want to construct a multi-class classifier, but we only have

the ability to train two-class models – say linear classifiers. There are various ways to
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combine several of them into a single k-class classifier. The one-versus-rest scheme

is to train k binary classifiers, the first of which separates class C1 from C2, . . . ,Cn , the

second of which separates C2 from all other classes, and so on. When training the i -

th classifier we treat all instances of class Ci as positive examples, and the remaining

instances as negative examples. Sometimes the classes are learned in a fixed order,

in which case we learn k −1 models, the i -th one separating Ci from Ci+1, . . . ,Cn with

1≤ i < n. An alternative to one-versus-rest is one-versus-one. In this scheme, we train

k(k −1)/2 binary classifiers, one for each pair of different classes. If a binary classifier

treats the classes asymmetrically, as happens with certain models, it makes more sense

to train two classifiers for each pair, leading to a total of k(k−1) classifiers.

A convenient way to describe all these and other schemes to decompose a k-class

task into l binary classification tasks is by means of a so-called output code matrix.

This is a k-by-l matrix whose entries are +1, 0 or −1. The following are output codes

describing the two ways to transform a three-class task by means of one-versus-one:

⎛
⎜⎝
+1 +1 0

−1 0 +1

0 −1 −1

⎞
⎟⎠

⎛
⎜⎝
+1 −1 +1 −1 0 0

−1 +1 0 0 +1 −1

0 0 −1 +1 −1 +1

⎞
⎟⎠

Each column of these matrices describes a binary classification task, using the class

corresponding to the row with the +1 entry as positive class and the class with the −1

entry as the negative class. So, in the symmetric scheme on the left, we train three clas-

sifiers: one to distinguish between C1 (positive) and C2 (negative), one to distinguish

between C1 (positive) and C3 (negative), and the remaining one to distinguish between

C2 (positive) and C3 (negative). The asymmetric scheme on the right learns three more

classifiers with the roles of positives and negatives swapped. The code matrices for the

unordered and ordered version of the one-versus-rest scheme are as follows:

⎛
⎜⎝
+1 −1 −1

−1 +1 −1

−1 −1 +1

⎞
⎟⎠

⎛
⎜⎝
+1 0

−1 +1

−1 −1

⎞
⎟⎠

On the left, we learn one classifier to distinguish C1 (positive) from C2 and C3 (nega-

tive), another one to distinguish C2 (positive) from C1 and C3 (negative), and the third

one to distinguish C3 (positive) from C1 and C2 (negative). On the right, we have or-

dered the classes in the order C1 – C2 – C3, and thus only two classifiers are needed.

In order to decide the class for a new test instance, we collect predictions from

all binary classifiers which can again be +1 for positive, −1 for negative and 0 for no

prediction or reject (the latter is possible, for instance, with a rule-based classifier).

Together, these predictions form a ‘word’ that can be looked up in the code matrix, a

process also known as decoding. Suppose the word is−1 +1 −1 and the scheme is un-
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ordered one-versus-rest, then we know the decision should be class C2. The question

is: what should we with words that do not appear in the code matrix? For instance,

suppose the word is 0 + 1 0, and the scheme is symmetric one-versus-one (the first

of the above four code matrices). In this case we could argue that the nearest code

word is the first row in the matrix, and so we should predict C1. To make this a lit-

tle bit more precise, we define the distance between a word w and a code word c as

d(w,c)=∑i (1−wi ci )/2, where i ranges over the ‘bits’ of the words (the columns in the

code matrix). That is, bits where the two words agree do not contribute to the distance;

each bit where one word has +1 and the other −1 contributes 1; and if one of the bits

is 0 the contribution is 1/2, regardless of the other bit.1 The predicted class for word w

is then argmin j d(w,c j ), where c j is the j -th row of the code matrix. So, if w = 0 +1 0

then d(w,c1)= 1 and d(w,c2)= d(w,c3)= 1.5, which means that we predict C1.

However, the nearest code word is not always unique. For instance, suppose we use

a four-class one-versus-rest scheme, and two of the binary classifiers predict positive

and the other two negative, then this word is equidistant to two code words, and so we

can’t resolve which of the two classes corresponding to the two nearest code words to

predict. We can improve the situation by adding more columns to our code matrix:

⎛
⎜⎜⎜⎜⎝
+1 −1 −1 −1

−1 +1 −1 −1

−1 −1 +1 −1

−1 −1 −1 +1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
+1 −1 −1 −1 +1 +1 +1

−1 +1 −1 −1 +1 −1 −1

−1 −1 +1 −1 −1 +1 −1

−1 −1 −1 +1 −1 −1 +1

⎞
⎟⎟⎟⎟⎠

On the left we see a standard four-class one-versus-rest code matrix, which has been

extended with three extra columns (i.e., binary learning problems) on the right. As a re-

sult, the distance between any two code words has now increased from 2 to 4, increas-

ing the likelihood that we can decode words that are not contained in the code matrix.

The resulting scheme can be seen as a mix between one-versus-rest and one-versus-

one classification. However, notice that the additional binary learning problems may

be hard. For instance, if our four classes are spam e-mails, work e-mails, household

e-mails (e.g., utility bills or credit card statements) and private e-mails, then each one-

versus-rest binary classification task may be much easier than, say, distinguishing be-

tween spam and work e-mails on the one hand and household and private e-mails on

the other.

The one-versus-rest and one-versus-one schemes are the most commonly used

ways to turn binary classifiers into multi-class classifiers. In order to force a decision in

the one-versus-rest scenario we can settle on a class ordering prior to or after learning.

In the one-versus-one scheme we can use voting to arrive at a decision, which is actu-

1This is a slight generalisation of the Hamming distance for binary strings, which counts the number of

positions in which the two strings differ.
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ally equivalent to distance-based decoding as demonstrated by the following example.

Example 3.2 (One-versus-one voting). A one-versus-one code matrix for k = 4

classes is as follows: ⎛
⎜⎜⎜⎜⎝
+1 +1 +1 0 0 0

−1 0 0 +1 +1 0

0 −1 0 −1 0 +1

0 0 −1 0 −1 −1

⎞
⎟⎟⎟⎟⎠

Suppose our six pairwise classifiers predict w = +1 −1 +1 −1 +1 +1. We can

interpret this as votes for C1 – C3 – C1 – C3 – C2 – C3; i.e., three votes for C3, two

votes for C1 and one vote for C2. More generally, the i -th classifier’s vote for the

j -th class can be expressed as (1+wi c j i )/2, where c j i is the entry in the j -th row

and i -th column of the code matrix. However, this overcounts the 0 entries in the

code matrix; since every class participates in k−1 pairwise binary tasks, and there

are l = k(k −1)/2 tasks, the number of zeros in every row is k(k−1)/2− (k−1)=
(k−1)(k−2)/2= l (k−2)/k (3 in our case). For each zero we need to subtract half

a vote, so the number of votes for C j is

v j =
(

l∑
i=1

1+wi c j i

2

)
− l

k−2

2k
=
(

l∑
i=1

wi c j i −1

2

)
+ l − l

k−2

2k

=−d j + l
2k−k+2

2k
= (k−1)(k+2)

4
−d j

where d j = ∑i (1−wi c j i )/2 is the bit-wise distance we used earlier. In other

words, the distance and number of votes for each class sum to a constant de-

pending only on the number of classes; with three classes this is 4.5. This can

be checked by noting that the distance between w and the first code word is 2.5

(two votes for C1); with the second code word, 3.5 (one vote for C2); with the third

code word, 1.5 (three votes for C3); and 4.5 with the fourth code word (no votes).

If our binary classifiers output scores, we can take these into account as follows. As

before we assume that the sign of the scores si indicates the class. We can then use

the appropriate entry in the code matrix c j i to calculate a margin zi = si c j i , which we

feed into a loss function L (margins and loss functions were discussed in Section 2.2).

We thus define the distance between a vector of scores s and the j -th code word c j as

d(s,c j )=∑i L(si c j i ), and we assign the class which minimises this distance. This way

of arriving at a multi-class decision from binary scores is called loss-based decoding.
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Example 3.3 (Loss-based decoding). Continuing the previous example, sup-

pose the scores of the six pairwise classifiers are (+5,−0.5,+4,−0.5,+4,+0.5).

This leads to the following margins, in matrix form:

⎛
⎜⎜⎜⎜⎝
+5 −0.5 +4 0 0 0

−5 0 0 −0.5 +4 0

0 +0.5 0 +0.5 0 +0.5

0 0 −4 0 −4 −0.5

⎞
⎟⎟⎟⎟⎠

Using 0–1 loss we ignore the magnitude of the margins and thus predict C3 as in

the voting-based scheme of Example 3.2. Using exponential loss L(z)= exp(−z),

we obtain the distances (4.67,153.08,4.82,113.85). Loss-based decoding would

therefore (just) favour C1, by virtue of its strong wins against C2 and C4; in con-

trast, all three wins of C3 are with small margin.

It should be noted that loss-based decoding assumes that each binary classifier scores

on the same scale.

Multi-class scores and probabilities

If we want to calculate multi-class scores and probabilities from binary classifiers, we

have a number of different options.

� We can use the distances obtained by loss-based decoding and turn them into

scores by means of some appropriate transformation, just as we turned bit-wise

distances into votes in Example 3.2. This method is applicable if the binary clas-

sifiers output calibrated scores on a single scale.

� Alternatively, we can use the output of each binary classifier as features (real-

valued if we use the scores, binary if we only use the predicted class) and train a

model that can produce multi-class scores, such as naive Bayes or tree models.

This method is generally applicable but requires additional training.

� A simple alternative that is also generally applicable and often produces satis-

factory results is to derive scores from coverage counts: the number of examples

of each class that are classified as positive by the binary classifer. Example 3.4

illustrates this.
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Example 3.4 (Coverage counts as scores). Suppose we have three classes and

three binary classifiers which either predict positive or negative (there is no reject

option). The first classifier classifies 8 examples of the first class as positive, no

examples of the second class, and 2 examples of the third class. For the second

classifier these counts are 2, 17 and 1, and for the third they are 4, 2 and 8. Sup-

pose a test instance is predicted as positive by the first and third classifiers. We

can add the coverage counts of these two classifiers to obtain a score vector of

(12,2,10). Likewise, if all three classifiers ‘fire’ for a particular test instance (i.e.,

predict positive), the score vector is (14,19,11).

We can describe this scheme conveniently using matrix notation:

(
1 0 1

1 1 1

)⎛⎜⎝
8 0 2

2 17 1

4 2 8

⎞
⎟⎠=
(

12 2 10

14 19 11

)
(3.1)

The middle matrix contains the class counts (one row for each classifier). The left

2-by-3 matrix contains, for each example, a row indicating which classifiers fire

for that example. The right-hand side then gives the combined counts for each

example.

With l binary classifiers, this scheme divides the instance space into up to 2l regions.

Each of these regions is assigned its own score vector, so in order to obtain diverse

scores l should be reasonably large.

Once we have multi-class scores, we can ask the familiar question of how good

these are. As we have seen in Section 2.1, an important performance index of a binary

scoring classifier is the area under the ROC curve or AUC, which is the proportion of

correctly ranked positive–negative pairs. Unfortunately ranking does not have a di-

rect multi-class analogue, and so the most obvious thing to do is to calculate the aver-

age AUC over binary classification tasks, either in a one-versus-rest or one-versus-one

fashion. For instance, the one-versus-rest average AUC estimates the probability that,

taking a uniformly drawn class as positive, a uniformly drawn example from that class

gets a higher score than a uniformly drawn example over all other classes. Notice that

the ‘negative’ is more likely to come from the more prevalent classes; for that reason

the positive class is sometimes also drawn from a non-uniform distribution in which

each class is weighted with its prevalence in the test set.
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Example 3.5 (Multi-class AUC). Assume we have a multi-class scoring classifier

that produces a k-vector of scores ŝ(x)= (ŝ1(x), . . . , ŝk (x)) for each test instance x.

By restricting attention to ŝi (x) we obtain a scoring classifier for class Ci against

the other classes, and we can calculate the one-versus-rest AUC for Ci in the nor-

mal way.

By way of example, suppose we have three classes, and the one-versus-rest

AUCs come out as 1 for the first class, 0.8 for the second class and 0.6 for the third

class. Thus, for instance, all instances of class 1 receive a higher first entry in their

score vectors than any of the instances of the other two classes. The average

of these three AUCs is 0.8, which reflects the fact that, if we uniformly choose

an index i , and we select an instance x uniformly among class Ci and another

instance x ′ uniformly among all instances not from Ci , then the expectation that

ŝi (x)> ŝi (x ′) is 0.8.

Suppose now C1 has 10 instances, C2 has 20 and C3 70. The weighted average

of the one-versus-rest AUCs is then 0.68: that is, if we uniformly choose x without

reference to the class, and then choose x ′ uniformly from among all instances not

of the same class as x ′, the expectation that ŝi (x) > ŝi (x ′) is 0.68. This is lower

than before, because it is now more likely that a random x comes from class C3,

whose scores do a worse ranking job.

We can obtain similar averages from one-versus-one AUCs. For instance, we can

define AUCi j as the AUC obtained using scores ŝi to rank instances from classes Ci and

C j . Notice that ŝ j may rank these instances differently, and so AUC j i 
= AUCi j . Taking

an unweighted average over all i 
= j estimates the probability that, for uniformly cho-

sen classes i and j 
= i , and uniformly chosen x ∈Ci and x ′ ∈C j , we have ŝi (x)> ŝi (x ′).

The weighted version of this estimates the probability that the instances are correctly

ranked if we don’t pre-select the class.

The simplest way to turn multi-class scores into classifications is by assigning the

class that achieves the maximum score – that is, if ŝ(x) = (ŝ1(x), . . . , ŝk (x)) is the score

vector assigned to instance x and m = argmaxi ŝi (x), then the class assigned to x is

ĉ(x)=Cm . However, just as in the two-class case such a fixed decision rule can be sub-

optimal, and instead we may want to learn it from data. What this means is that we

want to learn a weight vector w= (w1, . . . , wk ) to adjust the scores and assign ĉ(x)=Cm′

with m′ = argmaxi wi ŝi (x) instead.2 Since the weight vector can be multiplied with

a constant without affecting m′, we can fix one of the degrees of freedom by setting

2Notice that with two classes such a weighted decision rule assigns class C1 if w1 ŝ1(x) > w2 ŝ2(x), or

equivalently, ŝ1(x)/ŝ2(x) > w2/w1. This can be interpreted as a threshold on suitably transformed scores,
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(0,0,1)

(1,0,0)

(0,1,0)

3

1 2

Figure 3.1. (left) Triples of probabilistic scores represented as points in an equilateral triangle

connecting three corners of the unit cube. (right) The arrows show how the weights are adjusted

from the initial equal weights (dotted lines), first by optimising the separation of C2 against C1

(dashed line), then by optimising the separation of C3 against the other two classes (solid lines).

The end result is that the weight of C1 is considerably decreased, to the benefit of the other two

classes.

w1 = 1. Unfortunately, finding a globally optimal weight vector is computationally in-

tractable. A heuristic approach that works well in practice is to first learn w2 to opti-

mally separate C2 from C1 as in the two-class case; then learn w3 to separate C3 from

C1∪C2, and so on.

Example 3.6 (Reweighting multi-class scores). We illustrate the proce-

dure for a three-class probabilistic classifier. The probability vectors

p̂(x) = (p̂1(x), p̂2(x), p̂3(x)
)

can be thought of as points inside the unit cube.

Since the probabilities add up to 1, the points lie in an equilateral triangle

connecting three corners of the cube (Figure 3.1 (left)). Each corner of this

triangle represents one of the classes; the probability assigned to a particular

class in a given point is proportional to the distance to the opposite side.

Any decision rule of the form argmaxi wi ŝi (x) cuts the triangle in three areas

using lines perpendicular to the sides. For the unweighted decision rule these

lines intersect in the triangle’s centre of mass (Figure 3.1 (right)). Optimising the

separation between C2 against C1 means moving this point along a line paral-

lel to the base of the triangle, moving away from the class that receives greater

weight. Once the optimal point on this line is found, we optimise the separation

so the weighted decision rule indeed generalises the two-class decision threshold.
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of C3 against the first two classes by moving in a direction perpendicular to the

previous line.

Finally, we briefly look at the issue of obtaining calibrated multi-class probabilities.

This is not a solved problem and several approaches have been suggested in the lit-

erature. One of the simplest and most robust of these calculates normalised coverage

counts. Specifically, we take the summed or averaged coverage counts of all classifiers

that fire, and normalise these to obtain probability vectors whose components sum to

one. Equivalently, we can obtain probability vectors for each classifier separately, and

take a weighted average of these with weights determined by the relative coverage of

each classifier.

Example 3.7 (Multi-class probabilities from coverage counts). In Example 3.4

on p.87 we can divide the class counts by the total number of positive predic-

tions. This results in the following class distributions: (0.80,0,0.20) for the first

classifier, (0.10,0.85,0.05) for the second classifier, and (0.29,0.14,0.57) for the

third. The probability distribution associated with the combination of the first

and third classifiers is

10

24
(0.80,0,0.20)+ 14

24
(0.29,0.14,0.57)= (0.50,0.08,0.42)

which is the same distribution as obtained by normalising the combined counts

(12,2,10). Similarly, the distribution associated with all three classifiers is

10

44
(0.80,0,0.20)+ 20

44
(0.10,0.85,0.05)+ 14

44
(0.29,0.14,0.57)= (0.32,0.43,0.25)

Matrix notation describes this very succinctly as

(
10/24 0 14/24

10/44 20/44 14/44

)⎛⎜⎝
0.80 0.00 0.20

0.10 0.85 0.05

0.29 0.14 0.57

⎞
⎟⎠=
(

0.50 0.08 0.42

0.32 0.43 0.25

)

The middle matrix is a row-normalised version of the middle matrix in Equation

3.1. Row normalisation works by dividing each entry by the sum of the entries in

the row in which it occurs. As a result the entries in each row sum to one, which

means that each row can be interpreted as a probability distribution. The left

matrix combines two pieces of information: (i) which classifiers fire for each ex-

ample (for instance, the second classifier doesn’t fire for the first example); and
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(ii) the coverage of each classifier. The right-hand side then gives the class dis-

tribution for each example. Notice that the product of row-normalised matrices

again gives a row-normalised matrix.

In this section we have seen that many interesting issues arise, once we have more

than two classes. The general way of addressing a k-class learning problem with binary

classifiers is to (i) break the problem up into l binary learning problems; (ii) train l bi-

nary classifiers on two-class versions of the original data; and (iii) combine the predic-

tions from these l classifiers into a single k-class prediction. The most common ways

to do the first and third step is one-versus-one or one-versus-rest, but the use of code

matrices gives the opportunity of implementing other schemes. We have also looked at

ways of obtaining multi-class scores and probabilities from the binary classifiers, and

discussed a heuristic method to calibrate the multi-class decision rule by reweighting.

This concludes our discussion of classification, arguably the most common task in

machine learning. In the remainder of this chapter we will look at one more supervised

predictive task in the next section, before we turn our attention to unsupervised and

descriptive learning in Section 3.3.

3.2 Regression

In all the tasks considered so far – classification, scoring, ranking and probability esti-

mation – the label space was a discrete set of classes. In this section we will consider

the case of a real-valued target variable. A function estimator, also called a regressor, is

a mapping f̂ : X →R. The regression learning problem is to learn a function estimator

from examples (xi , f (xi )). For instance, we might want to learn an estimator for the

Dow Jones index or the FTSE 100 based on selected economic indicators.

While this may seem a natural and innocuous generalisation of discrete classifica-

tion, it is not without its consequences. For one thing, we switched from a relatively

low-resolution target variable to one with infinite resolution. Trying to match this pre-

cision in the function estimator will almost certainly lead to overfitting – besides, it is

highly likely that some part of the target values in the examples is due to fluctuations

that the model is unable to capture. It is therefore entirely reasonable to assume that

the examples are noisy, and that the estimator is only intended to capture the general

trend or shape of the function.
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Figure 3.2. (left) Polynomials of different degree fitted to a set of five points. From bottom to

top in the top right-hand corner: degree 1 (straight line), degree 2 (parabola), degree 3, degree 4

(which is the lowest degree able to fit the points exactly), degree 5. (right) A piecewise constant

function learned by a grouping model; the dotted reference line is the linear function from the

left figure.

Example 3.8 (Line fitting example). Consider the following set of five points:

x y

1.0 1.2

2.5 2.0

4.1 3.7

6.1 4.6

7.9 7.0

We want to estimate y by means of a polynomial in x. Figure 3.2 (left) shows the

result for degrees of 1 to 5 using �linear regression, which will be explained in

Chapter 7. The top two degrees fit the given points exactly (in general, any set

of n points can be fitted by a polynomial of degree no more than n−1), but they

differ considerably at the extreme ends: e.g., the polynomial of degree 4 leads to

a decreasing trend from x = 0 to x = 1, which is not really justified by the data.

To avoid overfitting the kind of data exemplified in Example 3.8 it is advisable to choose

the degree of the polynomial as low as possible – often a simple linear relationship is

assumed.

Regression is a task where the distinction between grouping and grading models

comes to the fore. The philosophy of grouping models is to cleverly divide the instance

space into segments and learn a local model in each segment that is as simple as pos-

sible. For instance, in decision trees the local model is a majority class classifier. In the
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same spirit, to obtain a regression tree we could predict a constant value in each leaf.

In the univariate problem of Example 3.8 this would result in the piecewise constant

curve of Figure 3.2 (right). Notice that such a grouping model is able to fit the given

points exactly, just as a polynomial of sufficiently high degree, and the same caveat

regarding overfitting applies.

We can understand the phenomenon of overfitting a bit better by looking at the

number of parameters that each model has. An n-degree polynomial has n+1 param-

eters: e.g., a straight line y = a ·x+b has two parameters, and the polynomial of degree

4 that fits the five points exactly has five parameters. A piecewise constant model with

n segments has 2n − 1 parameters: n y-values and n − 1 x-values where the ‘jumps’

occur. So the models that are able to fit the points exactly are the models with more

parameters. A rule of thumb is that, to avoid overfitting, the number of parameters esti-

mated from the data must be considerably less than the number of data points.

We have seen that classification models can be evaluated by applying a loss func-

tion to the margins, penalising negative margins (misclassifications) and rewarding

positive margins (correct classifications). Regression models are evaluated by apply-

ing a loss function to the residuals f (x)− f̂ (x). Unlike classification loss functions a

regression loss function will typically be symmetric around 0 (although it is conceiv-

able that positive and negative residuals have different weights). The most common

choice here is to take the squared residual as the loss function. This has the advan-

tage of mathematical convenience, and can also be justified by the assumption that

the observed function values are the true values contaminated by additive, normally

distributed noise. However, it is well-known that squared loss is sensitive to outliers:

you can see an example of this in Figure 7.2 on p.199.

If we underestimate the number of parameters of the model, we will not be able

to decrease the loss to zero, regardless of how much training data we have. On the

other hand, with a larger number of parameters the model will be more dependent on

the training sample, and small variations in the training sample can result in a con-

siderably different model. This is sometimes called the bias–variance dilemma: a low-

complexity model suffers less from variability due to random variations in the training

data, but may introduce a systematic bias that even large amounts of training data

can’t resolve; on the other hand, a high-complexity model eliminates such bias but can

suffer non-systematic errors due to variance.

We can make this a bit more precise by noting that expected squared loss on a train-

ing example x can be decomposed as follows:3

E
[(

f (x)− f̂ (x)
)2]= ( f (x)−E

[
f̂ (x)
])2+E

[(
f̂ (x)−E

[
f̂ (x)
])2]

(3.2)

3The derivation expands the squared difference term, making use of the linearity of E [·] and that E
[

f (x)
]=

f (x), after which terms can be rearranged to yield Equation 3.2.
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Figure 3.3. A dartboard metaphor illustrating the concepts of bias and variance. Each dartboard

corresponds to a different learning algorithm, and each dart signifies a different training sample.

The top row learning algorithms exhibit low bias, staying close to the bull’s eye (the true function

value for a particular x) on average, while the ones on the bottom row have high bias. The left

column shows low variance and the right column high variance.

It is important to note that the expectation is taken over different training sets and

hence different function estimators, but the learning algorithm and the example are

fixed. The first term on the right-hand side in Equation 3.2 is zero if these function es-

timators get it right on average; otherwise the learning algorithm exhibits a systematic

bias of some kind. The second term quantifies the variance in the function estimates

f̂ (x) as a result of variations in the training set. Figure 3.3 illustrates this graphically

using a dartboard metaphor. The best situation is clearly achieved in the top left-hand

corner of the figure, but in practice this is rarely achievable and we need to settle either

for a low bias and a high variance (e.g., approximating the target function by a high-

degree polynomial) or for a high bias and a low variance (e.g., using a linear approx-

imation). We will return to the bias–variance dilemma at several places in the book:

although the decomposition is not unique for most loss functions other than squared

loss, it serves as a useful conceptual tool for understanding over- and underfitting.
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3.3 Unsupervised and descriptive learning

So far, we have concerned ourselves exclusively with supervised learning of predictive

models. That is, we learn a mapping from instance space X to output space Y using

labelled examples (x, l (x)) ∈X ×L (or a noisy version thereof). This kind of learning

is called ‘supervised’ because of the presence of the target variable l (x) in the train-

ing data, which has to be supplied by a ‘supervisor’ or ‘teacher’ with some knowledge

about the true labelling function l . Furthermore, the models are called ‘predictive’

because the outputs produced by the models are either direct estimates of the target

variable or provide us with further information about its most likely value. Thus, we

have only paid attention to the top-left entry in Table 3.1. In the remainder of this

chapter we will briefly introduce the other three learning settings by means of selected

examples:

� unsupervised learning of a predictive model in the form of predictive clustering;

� unsupervised learning of a descriptive model, exemplified by descriptive clus-

tering and association rule discovery;

� supervised learning of a descriptive model, with subgroup discovery as practical

realisation.

Predictive model Descriptive model

Supervised learning classification, regression subgroup discovery

Unsupervised learning predictive clustering descriptive clustering,

association rule discovery

Table 3.1. The learning settings indicated in bold are introduced in the remainder of this chapter.

It is worthwhile reflecting for a moment on the nature of descriptive learning. The

task here is to come up with a description of the data – to produce a descriptive model.

It follows that the task output, being a model, is of the same kind as the learning out-

put. Furthermore, it makes no sense to employ a separate training set to produce the

descriptive model, as we want the model to describe our actual data rather than some

hold-out set. In other words, in descriptive learning the task and learning problem co-

incide (Figure 3.4). This makes some things harder: for example, it is unlikely that a

‘ground truth‘ or ‘gold standard’ is available to test the descriptive models against, and

hence evaluating descriptive learning algorithms is much less straightforward than

evaluating predictive ones. On the other hand, one could say that descriptive learn-

ing leads to the discovery of genuinely new knowledge, and it is often situated at the

intersection of machine learning and data mining.
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Task
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model
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objects
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algorithm

Data
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Figure 3.4. In descriptive learning the task and learning problem coincide: we do not have a

separate training set, and the task is to produce a descriptive model of the data.

Predictive and descriptive clustering

The distinction between predictive and descriptive models can be clearly observed in

clustering tasks. One way to understand clustering is as learning a new labelling func-

tion from unlabelled data. So we could define a ‘clusterer’ in the same way as a classi-

fier, namely as a mapping q̂ : X →C , where C = {C1,C2, . . . ,Ck } is a set of new labels.

This corresponds to a predictive view of clustering, as the domain of the mapping is

the entire instance space, and hence it generalises to unseen instances. A descriptive

clustering model learned from given data D ⊆X would be a mapping q̂ : D →C whose

domain is D rather than X . In either case the labels have no intrinsic meaning, other

than to express whether two instances belong to the same cluster. So an alternative

way to define a clusterer is as an equivalence relation q̂ ⊆ X ×X or q̂ ⊆ D ×D (see

Background 2.1 on p.51 for the definition of an equivalence relation), or, equivalently,

as a partition of X or D .

The distinction between predictive and descriptive clustering is subtle and not al-

ways articulated clearly in the literature. Several well-known clustering algorithms in-

cluding �K -means (discussed in more detail in Chapter 8) learn a predictive cluster-

ing. Thus, they learn a clustering model from training data that can subsequently be

used to assign new data to clusters. This is in keeping with our distinction between the

task (clustering arbitrary data) and the learning problem (learning a clustering model

from training data). However, this distinction isn’t really applicable to descriptive clus-

tering methods: here, the clustering model learned from D can only be used to cluster

D . In effect, the task becomes learning a suitable clustering model for the given data.

Without any further information, any clustering is as good as any other. What dis-

tinguishes a good clustering is that the data is partitioned into coherent groups or clus-

ters. ‘Coherence’ here means that, on average, two instances from the same cluster

have more in common – are more similar – than two instances from different clusters.

This assumes some way of assessing the similarity or, as is usually more convenient,

the dissimilarity or distance of an arbitrary pair of instances. If our features are nu-

merical, i.e., X = Rd , the most obvious distance measure is Euclidean distance, but
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other choices are possible, some of which generalise to non-numerical features. Most

distance-based clustering methods depend on the possibility of defining a ‘centre of

mass’ or exemplar for an arbitrary set of instances, such that the exemplar minimises

some distance-related quantity over all instances in the set, called its scatter. A good

clustering is then one where the scatter summed over each cluster – the within-cluster

scatter – is much smaller than the scatter of the entire data set.

This analysis suggests a definition of the clustering problem as finding a partition

D = D1� . . .�DK that minimises the within-cluster scatter. However, there are a few

issues with this definition:

� the problem as stated has a trivial solution: set K = |D| so that each ‘cluster’

contains a single instance from D and thus has zero scatter;

� if we fix the number of clusters K in advance, the problem cannot be solved effi-

ciently for large data sets (it is NP-hard).

The first problem is the clustering equivalent of overfitting the training data. It could be

dealt with by penalising large K . Most approaches, however, assume that an educated

guess of K can be made. This leaves the second problem, which is that finding a glob-

ally optimal solution is intractable for larger problems. This is a well-known situation

in computer science and can be dealt with in two ways:

� by applying a heuristic approach, which finds a ‘good enough’ solution rather

than the best possible one;

� by relaxing the problem into a ‘soft’ clustering problem, by allowing instances a

degree of membership in more than one cluster.

Most clustering algorithms follow the heuristic route, including the K -means algo-

rithm. The soft clustering approach can be addressed in various ways, including

�Expectation-Maximisation (Section 9.4) and �matrix decomposition (Section 10.3).

Figure 3.5 illustrates the heuristic and soft clustering approaches. Notice that a soft

clustering generalises the notion of a partition, in the same way that a probability esti-

mator generalises a classifier.

The representation of clustering models depends on whether they are predictive,

descriptive or soft. A descriptive clustering of n data points into c clusters could be

represented by a partition matrix: an n-by-c binary matrix with exactly one 1 in each

row (and at least one 1 in each column, otherwise there would be empty clusters). A

soft clustering corresponds to a row-normalised n-by-c matrix. A predictive clustering

partitions the whole instance space and is therefore not suitable for a matrix represen-

tation. Typically, predictive clustering methods represent a cluster by their centroid or

exemplar: in that case, the cluster boundaries are a set of straight lines called a Voronoi
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Figure 3.5. (left) An example of a predictive clustering. The coloured dots were sampled from

three bivariate Gaussians centred at (1,1), (1,2) and (2,1). The crosses and solid lines are the

cluster exemplars and cluster boundaries found by 3-means. (right) A soft clustering of the

same data found by matrix decomposition.

diagram (Figure 3.5 (left)). More generally, each cluster could be represented by a prob-

ability density, with the boundaries occurring where densities of neighbouring clusters

are equal; this would allow non-linear cluster boundaries.

Example 3.9 (Representing clusterings). The cluster exemplars in Figure 3.5

(left) can be given as a c-by-2 matrix:

⎛
⎜⎝

0.92 0.93

0.98 2.02

2.03 1.04

⎞
⎟⎠

The following n-by-c matrices represent a descriptive clustering (left) and a soft

clustering (right) of given data points:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

0 1 0

1 0 0

0 0 1

· · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.40 0.30 0.30

0.40 0.51 0.09

0.44 0.29 0.27

0.35 0.08 0.57

· · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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An interesting question is how clustering models should be evaluated. In the ab-

sence of labelled data we cannot use a test set in the same way as we would in classi-

fication or regression. We can use within-cluster scatter as a measure of the quality of

a clustering. For a predictive clustering it is possible to evaluate within-cluster scatter

on hold-out data that wasn’t used to build the clusters in the first place. An alternative

way of evaluating a clustering arises if we have some knowledge about instances that

should, or should not, be clustered together.

Example 3.10 (Evaluating clusterings). Suppose we have five test instances that

we think should be clustered as {e1,e2}, {e3,e4,e5}. So out of the 5·4= 20 possible

pairs, 4 are considered ‘must-link’ pairs and the other 16 as ‘must-not-link’ pairs.

The clustering to be evaluated clusters these as {e1,e2,e3}, {e4,e5} – so two of the

must-link pairs are indeed clustered together (e1–e2, e4–e5), the other two are

not (e3–e4, e3–e5), and so on.

We can tabulate this as follows:

Are together Are not together

Should be together 2 2 4

Should not be together 2 14 16

4 16 20

We can now treat this as a two-by-two contingency table, and evaluate it accord-

ingly. For instance, we can take the proportion of pairs on the ‘good’ diagonal,

which is 16/20= 0.8. In classification we would call this accuracy, but in the clus-

tering context this is known as the Rand index.

Note that there are usually many more must-not-link pairs than must-link pairs,

and it is a good idea to compensate for this. One way to do that is to calculate the har-

monic mean of precision and recall (the latter the same as true positive rate, see Table

2.3 on p.57), which in the information retrieval literature is known as the F-measure.4

Precision is calculated on the left column of the contingency table and recall on the top

row; as a result the bottom right-hand cell (the must-not-link pairs that are correctly

not clustered together) are ignored, which is precisely what we want. In the example

both precision and recall are 2/4 = 0.5, and so is the F-measure. This shows that the

relatively good Rand index is mostly accounted for by the must-not-link pairs that end

up in different clusters.

4The harmonic mean of precision and recall is 2
1/prec+1/rec =

2prec·rec
prec+rec . The harmonic mean is appropriate

for averaging ratios; see Background 10.1 on p.300.
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Other descriptive models

To wrap up our catalogue of machine learning tasks we will briefly look at two other

descriptive models, one learned in a supervised fashion from labelled data and the

other entirely unsupervised.

Subgroup models don’t try to approximate the labelling function, but rather aim at

identifying subsets of the data exhibiting a class distribution that is significantly differ-

ent from the overall population. Formally, a subgroup is a mapping ĝ : D → {true, false}

and is learned from a set of labelled examples (xi , l (xi )), where l : X → C is the true

labelling function. Note that ĝ is the characteristic function of the set G = {x ∈D|ĝ (x)=
true}, which is called the extension of the subgroup. Note also that we used the given

data D rather than the whole instance space X for the domain of a subgroup, since it

is a descriptive model.

Example 3.11 (Subgroup discovery). Imagine you want to market the new ver-

sion of a successful product. You have a database of people who have been sent

information about the previous version, containing all kinds of demographic,

economic and social information about those people, as well as whether or not

they purchased the product. If you were to build a classifier or ranker to find the

most likely customers for your product, it is unlikely to outperform the major-

ity class classifier (typically, relatively few people will have bought the product).

However, what you are really interested in is finding reasonably sized subsets

of people with a proportion of customers that is significantly higher than in the

overall population. You can then target those people in your marketing cam-

paign, ignoring the rest of your database.

A subgroup is essentially a binary classifier, and so one way to develop a subgroup

discovery system is to adapt an existing classifier training algorithm. This may not in-

volve much more than adapting the search heuristic to reflect the specific objective of

a subgroup (to identify subsets of the data with a significantly different class distribu-

tion). However, this would only give us a single subgroup. Rule learners are particularly

appropriate for subgroup discovery since every rule can be interpreted as a separate

subgroup.

How do we distinguish interesting subgroups from uninteresting ones? This can be

determined by constructing a contingency table similar to the ones we use in binary

classification. For three classes such a table looks as follows:
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In subgroup Not in subgroup

Labelled C1 g1 C1− g1 C1

Labelled C2 g2 C2− g2 C2

Labelled C3 g3 C3− g3 C3

|G| |D|− |G| |D|
where gi = |{x ∈D|ĝ (x) = true ∧ l (x) =Ci }| and Ci is shorthand for |{x ∈D|l (x) =Ci }|.
From here there are a number of possibilities. One idea is to measure the extent to

which the class distribution in the left column is different from the class distribution

in the row marginals (the right-most column). As we shall see later (Example 6.6 on

p.180), this boils down to using an adaptation of average recall as evaluation measure.

Another idea is to treat the subgroup as a decision tree split and borrow splitting crite-

ria from �decision tree learning (Section 5.1). It is also possible to use the χ2 statistic to

evaluate the extent to which each gi differs from what would be expected on the basis

of the marginals Ci and |G|. What these evaluation measures have in common is that

they prefer different class distributions in the subgroup and its complement from the

overall distribution in D , and also larger subgroups over smaller ones. Most of these

measures are actually symmetric in that they assign the same evaluation to a subgroup

and its complement, from which it follows that they also prefer larger complements

over smaller ones – in other words, they prefer subgroups that are about half the size

of the data (other things being equal).

I will now give an example of unsupervised learning of descriptive models. Asso-

ciations are things that usually occur together. For example, in market basket analysis

we are interested in items frequently bought together. An example of an association

rule is ·if beer then crisps·, stating that customers who buy beer tend to also buy crisps.

Association rule discovery starts with identifying feature values that often occur to-

gether. There is some superficial similarity with subgroups here, but these so-called

frequent item sets are identified in a purely unsupervised manner, without need for

labelled training data. Item sets then give rise to rules describing co-occurrences be-

tween feature values. These association rules are if-then rules similar to classification

rules, except that the then-part isn’t restricted to a particular class variable and can

contain any feature (or even several features). Rather than adapting a given learning

algorithm we need a new algorithm that first finds frequent item sets and then turns

them into association rules. The process needs to take into account a mix of statistics

in order to avoid generating trivial rules.

Example 3.12 (Association rule discovery). In a motorway service station most

clients will buy petrol. This means that there will be many frequent item sets
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involving petrol, such as {newspaper,petrol}. This might suggest the construc-

tion of an association rule ·if newspaper then petrol· – however, this is predictable

given that {petrol} is already a frequent item set (and clearly at least as fre-

quent as {newspaper,petrol}). Of more interest would be the converse rule

·if petrol then newspaper· which expresses that a considerable proportion of the

people buying petrol also buy a newspaper.

We clearly see a relationship with subgroup discovery in that association rules also

identify subsets that have a different distribution when compared with the full data

set, namely with respect to the then-part of the rule. The difference is that the then-

part is not a fixed target variable but it is found as part of the discovery process. Both

subgroup discovery and association rule discovery will be discussed in the context of

rule learning in Section 6.3.

3.4 Beyond binary classification: Summary and further reading

While binary classification is an important task in machine learning, there are many

other relevant tasks and in this chapter we looked at a number of them.

� In Section 3.1 we considered classification tasks with more than two classes. We

shall see in the coming chapters that some models handle this situation very

naturally, but if our models are essentially two-class (such as linear models) we

have to approach it via a combination of binary classification tasks. One key idea

is the use of a code matrix to combine the results of several binary classifiers,

as proposed by Dietterich and Bakiri (1995) under the name ‘error-correcting

output codes’ and developed by Allwein et al. (2000). We also looked at ways

to obtain scores for more than two classes and to evaluate those scores using

multi-class adaptations of the area under the ROC curve. One of these multi-

class extensions of AUC was proposed and analysed by Hand and Till (2001). The

heuristic procedure for reweighting multi-class scores in Example 3.6 on p.89

was proposed by Lachiche and Flach (2003); Bourke et al. (2008) demonstrated

that it achieves good performance in comparison with a number of alternative

approaches.

� Section 3.2 was devoted to regression: predicting a real-valued target value. This

is a classical data analysis problem that was already studied by Carl Friedrich

Gauss in the late eighteenth century. It is natural to use a quadratic loss func-

tion on the residuals, although this carries with it a certain sensitivity to out-

liers. Grading models are most common here, although it is also possible to
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learn a grouping model that divides the instance space into segments that admit

a simple local model. Since it is often possible to fit a set of points exactly (e.g.,

with a high-degree polynomial), care must be taken to avoid overfitting. Finding

the right balance between over- and underfitting is sometimes called the bias–

variance dilemma; an extensive discussion (including the dartboard metaphor)

can be found in Rajnarayan and Wolpert (2010).

� In Section 3.3 we considered unsupervised and descriptive learning tasks. We

saw that in descriptive learning the task and learning problem coincide. A clus-

tering model can be either predictive or descriptive: in the former case it is meant

to construct classes in a wholly unsupervised manner, after which the learned

model can be applied to unseen data in the usual way. Descriptive clustering,

on the other hand, only applies to the data at hand. It should be noted that

the distinction between predictive and descriptive clustering is not universally

recognised in the literature; sometimes the term ‘predictive clustering’ is used

in the slightly different sense of clustering simultaneously on the target variable

and the features (Blockeel et al., 1998).

� Like descriptive clustering, association rule discovery is another descriptive task

which is wholly unsupervised. It was introduced by Agrawal, Imielinski and Swami

(1993) and has given rise to a very large body of work in the data mining litera-

ture. Subgroup discovery is a form of supervised learning of descriptive mod-

els aimed at finding subsets of the data with a significantly different distribu-

tion of the target variable. It was first studied by Klösgen (1996) and extended

to the more general notion of exceptional model mining in order to deal with,

e.g., real-valued target variables by Leman et al. (2008). More generally, unsu-

pervised learning of descriptive models is a large subject that was pioneered by

Tukey (1977).

�



CHAPTER 4

Concept learning

H
AVING DISCUSSED A VARIETY of tasks in the preceding two chapters, we are now in an

excellent position to start discussing machine learning models and algorithms for learn-

ing them. This chapter and the next two are devoted to logical models, the hallmark

of which is that they use logical expressions to divide the instance space into segments

and hence construct grouping models. The goal is to find a segmentation such that

the data in each segment is more homogeneous, with respect to the task to be solved.

For instance, in classification we aim to find a segmentation such that the instances in

each segment are predominantly of one class, while in regression a good segmentation

is such that the target variable is a simple function of a small number of predictor vari-

ables. There are essentially two kinds of logical models: tree models and rule models.

Rule models consist of a collection of implications or if–then rules, where the if-part

defines a segment, and the then-part defines the behaviour of the model in this seg-

ment. Tree models are a restricted kind of rule model where the if-parts of the rules are

organised in a tree structure.

In this chapter we consider methods for learning logical expressions or concepts

from examples, which lies at the basis of both tree models and rule models. In concept

learning we only learn a description for the positive class, and label everything that

doesn’t satisfy that description as negative. We will pay particular attention to the gen-

erality ordering that plays an important role in logical models. In the next two chapters

104
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The simplest logical expressions are equalities of the form Feature=Value and,

for numerical features, inequalities of the form Feature<Value; these are called

literals. Complex Boolean expressions can be built using logical connectives:

conjunction ∧ , disjunction ∨ , negation ¬ and implication → . The following

equivalences hold (the left two are called the De Morgan laws):

¬(A ∧ B)≡¬A ∨ ¬B ¬¬A ≡ A

¬(A ∨ B)≡¬A ∧ ¬B A → B ≡¬A ∨ B

If Boolean expression A is true of instance x, we say that A covers x. The set

of instances covered by expression A is called its extension and denoted XA =
{x ∈X |A covers x}, where X denotes the instance space which acts as the uni-

verse of discourse (see Background 2.1 on p.51). There is a direct correspondence

between logical connectives and operations on sets: e.g., XA ∧ B = XA ∩XB ,

XA ∨ B = XA ∪XB and X¬A = X \ XA . If XA ⊇ XA′ , we say that A is at least

as general as A′, and if in addition XA 
⊆XA′ we say that A is more general than

A′. This generality ordering is a partial order on logical expressions as defined in

Background 2.1. (More precisely: it is a partial order on the equivalence classes

of the relation of logical equivalence ≡.)

A clause is an implication P →Q such that P is a conjunction of literals and Q

is a disjunction of literals. Using the equivalences above we can rewrite such an

implication as

(A ∧ B)→ (C ∨D)≡¬(A ∧ B) ∨ (C ∨D)≡¬A ∨ ¬B ∨C ∨D

and hence a clause can equivalently be seen as a disjunction of literals or their

negations. Any logical expression can be rewritten as a conjunction of clauses;

this is referred to as conjunctive normal form (CNF). Alternatively, any logical ex-

pression can be written as a disjunction of conjunctions of literals or their nega-

tion; this is called disjunctive normal form (DNF). A rule is a clause A → B where

B is a single literal; this is also often referred to as a Horn clause, after the Ameri-

can logician Alfred Horn.

Background 4.1. Some logical concepts and notation.

we consider tree and rule models, which go considerably beyond concept learning as

they can handle multiple classes, probability estimation, regression, as well as cluster-

ing tasks.
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4.1 The hypothesis space

The simplest concept learning setting is where we restrict the logical expressions de-

scribing concepts to conjunctions of literals (see Background 4.1 for a review of impor-

tant definitions and notation from logic). The following example illustrates this.1

Example 4.1 (Learning conjunctive concepts). Suppose you come across a

number of sea animals that you suspect belong to the same species. You observe

their length in metres, whether they have gills, whether they have a prominent

beak, and whether they have few or many teeth. Using these features, the first

animal can described by the following conjunction:

Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

The next one has the same characteristics but is a metre longer, so you drop the

length condition and generalise the conjunction to

Gills= no ∧ Beak= yes ∧ Teeth=many

The third animal is again 3 metres long, has a beak, no gills and few teeth, so your

description becomes

Gills= no ∧ Beak= yes

All remaining animals satisfy this conjunction, and you finally decide they are

some kind of dolphin.

Despite the simplicity of this example, the space of possible concepts – usually

called the hypothesis space – is already fairly large. Let’s assume we have three different

lengths: 3, 4 and 5 metres, while the other three features have two values each. We then

have 3 ·2 ·2 ·2= 24 possible instances. How many conjunctive concepts are there using

these same features? We can answer this question if we treat the absence of a feature

as an additional ‘value’. This gives a total of 4 ·3 ·3 ·3 = 108 different concepts. While

this seems quite a lot, you should realise that the number of possible extensions – sets

of instances – is much larger: 224, which is more than 16 million! That is, if you pick

a random set of instances, the odds that you can’t find a conjunctive concept that ex-

actly describes those instances are well over 100 000 to 1. This is actually a good thing,

as it forces the learner to generalise beyond the training data and cover instances that it

hasn’t seen before. Figure 4.1 depicts this hypothesis space, making use of the general-

1Inspired by www.cwtstrandings.org.
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ity ordering (i.e., the subset relationship between concept extensions; see Background

4.1).

Least general generalisation

If we rule out all concepts that don’t cover at least one of the instances in Example 4.1,

the hypothesis space is reduced to 32 conjunctive concepts (Figure 4.2). Insisting that

any hypothesis cover all three instances reduces this further to only four concepts, the

least general one of which is the one found in the example – it is called their least gen-

eral generalisation (LGG). Algorithm 4.1 formalises the procedure, which is simply to

repeatedly apply a pairwise LGG operation (Algorithm 4.2) to an instance and the cur-

rent hypothesis, as they both have the same logical form. The structure of the hypoth-

esis space ensures that the result is independent of the order in which the instances are

processed.

Intuitively, the LGG of two instances is the nearest concept in the hypothesis space

where paths upward from both instances intersect. The fact that this point is unique

is a special property of many logical hypothesis spaces, and can be put to good use

in learning. More precisely, such a hypothesis space forms a lattice: a partial order in

which each two elements have a least upper bound (lub) and a greatest lower bound

(glb). So, the LGG of a set of instances is exactly the least upper bound of the instances

in that lattice. Furthermore, it is the greatest lower bound of the set of all generalisa-

tions of the instances: all possible generalisations are at least as general as the LGG.

In this very precise sense, the LGG is the most conservative generalisation that we can

learn from the data.

If we want to be a bit more adventurous, we could choose one of the more gen-

eral hypotheses, such as Gills= no or Beak= yes. However, we probably don’t want to

choose the most general hypothesis, which is simply that every animal is a dolphin,

Algorithm 4.1: LGG-Set(D) – find least general generalisation of a set of instances.

Input : data D .

Output : logical expression H .

1 x ←first instance from D ;

2 H ←x;

3 while instances left do

4 x ←next instance from D ;

5 H ←LGG(H , x) ; // e.g., LGG-Conj (Alg. 4.2) or LGG-Conj-ID (Alg. 4.3)

6 end

7 return H
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as this would clearly be an over-generalisation. Negative examples are very useful to

prevent over-generalistion.

Example 4.2 (Negative examples). In Example 4.1 we observed the following

dolphins:

p1: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

p2: Length= 4 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

p3: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

Suppose you next observe an animal that clearly doesn’t belong to the species –

a negative example. It is described by the following conjunction:

n1: Length= 5 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many

This negative example rules out some of the generalisations that were hitherto

still possible: in particular, it rules out the concept Beak= yes, as well as the

empty concept which postulates that everything is a dolphin.

The process is illustrated in Figure 4.3. We now have two hypotheses left, one which is

least general and the other most general.

Internal disjunction

You might be tempted to conclude from this and the previous example that we always

have a unique most general hypothesis, but that is not the case in general. To demon-

strate that, we are going to make our logical language slightly richer, by allowing a

restricted form of disjunction called internal disjunction. The idea is very simple: if

you observe one dolphin that is 3 metres long and another one of 4 metres, you may

want to add the condition ‘length is 3 or 4 metres’ to your concept. We will write this

as Length= [3,4], which logically means Length= 3 ∨ Length= 4. This of course only

makes sense for features that have more than two values: for instance, the internal

disjunction Teeth= [many, few] is always true and can be dropped.

Algorithm 4.2: LGG-Conj(x, y) – find least general conjunctive generalisation of

two conjunctions.

Input : conjunctions x, y .

Output : conjunction z.

1 z ←conjunction of all literals common to x and y ;

2 return z
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Example 4.3 (Internal disjunction). Using the same three positive examples as

in Example 4.1, the second and third hypothesis are now

Length= [3,4] ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

and

Length= [3,4] ∧ Gills= no ∧ Beak= yes

We can drop any of the three conditions in the latter LGG without covering the

negative example from Example 4.2. Generalising further to single conditions,

we see that Length= [3,4] and Gills= no are still OK but Beak= yes is not, as it

covers the negative example.

Algorithm 4.3 details how we can calculate the LGG of two conjunctions employing

internal disjunction. The function Combine-ID(vx , vy ) returns [vx , vy ] if vx and vy are

constants, and their union if vx or vy are already sets of values: e.g., Combine-ID([3,4], [4,5])=
[3,4,5].

4.2 Paths through the hypothesis space

As we can clearly see in Figure 4.4, in this example we have not one but two most gen-

eral hypotheses. What we can also notice is that every concept between the least general

one and one of the most general ones is also a possible hypothesis, i.e., covers all the

positives and none of the negatives. Mathematically speaking we say that the set of

Algorithm 4.3: LGG-Conj-ID(x, y) – find least general conjunctive generalisation

of two conjunctions, employing internal disjunction.

Input : conjunctions x, y .

Output : conjunction z.

1 z ←true;

2 for each feature f do

3 if f = vx is a conjunct in x and f = vy is a conjunct in y then

4 add f = Combine-ID(vx , vy ) to z ; // Combine-ID: see text

5 end

6 end

7 return z
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Length=3 & Gills=no & Beak=yes & Teeth=many

Length=[3,4] & Gills=no & Beak=yes & Teeth=many Length=[3,5] & Gills=no & Beak=yes & Teeth=manyLength=3 & Beak=yes & Teeth=many Length=3 & Gills=no & Teeth=many Length=3 & Gills=no & Beak=yes

Gills=no & Beak=yes & Teeth=manyLength=[3,4] & Beak=yes & Teeth=many Length=[3,4] & Gills=no & Teeth=many Length=[3,4] & Gills=no & Beak=yes

Beak=yes & Teeth=many

=yes & Teeth=many

Gills=no & Teeth=many

Length=[3,5] & Gills=no & Teeth=many

Gills=no & Beak=yes

Length=[3,5] & Gills=no & Beak=yes

Teeth=many

Length=[3,4] & Teeth=manyLength=[3,5] & Teeth=many

Beak=yes

Length=[3,4] & Beak=yesLength=[3,5] & Beak=yes

true

Gills=noLength=[3,4]Length=[3,5]

Length=[3,4] & Gills=no Length=[3,5] & Gills=no

Length=3 & Teeth=many Length=3 & Beak=yes

Length=3

Length=[3,4] & Gills=no & Beak=yes

Length=[3,4] & Beak=yes Length=[3,4] & Gills=no Gills=no & Beak=yes

Length=[3,4] Gills=no

Figure 4.4. (top) A snapshot of the expanded hypothesis space that arises when internal dis-

junction is used for the ‘Length’ feature. We now need one more generalisation step to travel

upwards from a completely specified example to the empty conjunction. (bottom) The version

space consists of one least general hypothesis, two most general hypotheses, and three in be-

tween.

hypotheses that agree with the data is a convex set, which basically means that we can

interpolate between any two members of the set, and if we find a concept that is less

general than one and more general than the other then that concept is also a member

of the set. This in turn means that we can describe the set of all possible hypotheses by

its least and most general members. This is summed up in the following definition.

Definition 4.1 (Version space). A concept is complete if it covers all positive exam-

ples. A concept is consistent if it covers none of the negative examples. The version

space is the set of all complete and consistent concepts. This set is convex and is fully

defined by its least and most general elements. �
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A: Length=3 & Gills=no & Beak=yes & Teeth=many

B: Length=[3,4] & Gills=no & Beak=yes & Teeth=many

C: Length=[3,4] & Gills=no & Beak=yes

E: Beak=yes

D: Length=[3,4] & Beak=yes

F: true

Negatives
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Figure 4.5. (left) A path in the hypothesis space of Figure 4.3 from one of the positive examples

(p1, see Example 4.2 on p.110) all the way up to the empty concept. Concept A covers a single

example; B covers one additional example; C and D are in the version space, and so cover all

three positives; E and F also cover the negative. (right) The corresponding coverage curve, with

ranking p1 – p2 – p3 – n1.

We can draw a useful connection between logical hypothesis spaces and the cover-

age plots introduced in Chapter 2. Suppose you were to follow a path in the hypothesis

space from a positive example, through a selection of its generalisations, all the way up

to the empty concept. The latter, by construction, covers all positives and all negatives,

and hence occupies the top-right point (Neg,Pos) in the coverage plot. The starting

point, being a single positive example, occupies the point (0,1) in the coverage plot.

In fact, it is customary to extend the hypothesis space with a bottom element which

doesn’t cover any examples and hence is less general than any other concept. Taking

that point as the starting point of the path means that we start in the bottom-left point

(0,0) in the coverage plot.

Moving upwards in the hypothesis space by generalisation means that the numbers

of covered positives and negatives can stay the same or increase, but never decrease.

In other words, an upward path through the hypothesis space corresponds to a cover-

age curve and hence to a ranking. Figure 4.5 illustrates this for the running example.

The chosen path is but one among many possible paths; however, notice that if a path,

like this one, includes elements of the version space, the corresponding coverage curve

passes through ‘ROC heaven’ (0,Pos) and AUC= 1. In other words, such paths are op-

timal. Concept learning can be seen as the search for an optimal path through the
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hypothesis space.

What happens, you may ask, if the LGG of the positive examples covers one or more

negatives? In that case, any generalisation of the LGG will be inconsistent as well. Con-

versely, any consistent hypothesis will be incomplete. It follows that the version space

is empty in this case; we will say that the data is not conjunctively separable. The fol-

lowing example illustrates this.

Example 4.4 (Data that is not conjunctively separable). Suppose we have the

following five positive examples (the first three are the same as in Example 4.1):

p1: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

p2: Length= 4 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

p3: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

p4: Length= 5 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

p5: Length= 5 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

and the following negatives (the first one is the same as in Example 4.2):

n1: Length= 5 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many

n2: Length= 4 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many

n3: Length= 5 ∧ Gills= yes ∧ Beak= no ∧ Teeth=many

n4: Length= 4 ∧ Gills= yes ∧ Beak= no ∧ Teeth=many

n5: Length= 4 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

The least general complete hypothesis is Gills= no ∧ Beak= yes as before, but

this covers n5 and hence is inconsistent. There are seven most general consis-

tent hypotheses, none of which are complete:

Length= 3 (covers p1 and p3)

Length= [3,5] ∧ Gills= no (covers all positives except p2)

Length= [3,5] ∧ Teeth= few (covers p3 and p5)

Gills= no ∧ Teeth=many (covers p1, p2 and p4)

Gills= no ∧ Beak= no

Gills= yes ∧ Teeth= few

Beak= no ∧ Teeth= few

The last three of these do not cover any positive examples.
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Most general consistent hypotheses

As this example suggests, finding most general consistent hypotheses is considerably

more involved than finding least general complete ones. Essentially, the process is

one of enumeration. Algorithm 4.4 gives an algorithm which returns all most general

consistent specialisations of a given concept, where a minimal specialisation of a con-

cept is one that can be reached in one downward step in the hypothesis lattice (e.g.,

by adding a conjunct, or removing a value from an internal disjunction). Calling the

algorithm with C = true returns the most general consistent hypotheses.

Figure 4.6 shows a path through the hypothesis space of Example 4.4, and the corre-

sponding coverage curve. We see that the path goes through three consistent hypothe-

ses, which are consequently plotted on the y-axis of the coverage plot. The other three

hypotheses are complete, and therefore end up on the top of the graph; one of these is,

in fact, the LGG of the positives (D). The ranking corresponding to this coverage curve

is p3 – p5 – [p1,p4] – [p2,n5] – [n1–4]. This ranking commits half a ranking error out of

25, and so AUC = 0.98. We can choose one concept from the ranking by applying the

techniques discussed in Section 2.2. For instance, suppose that classification accuracy

is the criterion we want to optimise. In coverage space, accuracy isometrics have slope

1, and so we see immediately that concepts C and D (or E) both achieve the best ac-

curacy in Figure 4.6. If performance on the positives is more important we prefer the

complete but inconsistent concept D; if performance on the negatives is valued more

we choose the incomplete but consistent concept C.

Closed concepts

It is worthwhile to reflect on the fact that concepts D and E occupy the same point in

coverage space. What this means is that generalising D into E by dropping Beak= yes

does not change the coverage in terms of positive and negative examples. One could

Algorithm 4.4: MGConsistent(C , N ) – find most general consistent specialisations

of a concept.

Input : concept C ; negative examples N .

Output : set of concepts S.

1 if C doesn’t cover any element from N then return {C };

2 S ←�;

3 for each minimal specialisation C ′ of C do

4 S ←S∪MGConsistent(C ′, N );

5 end

6 return S
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A: Length=3 & Gills=no & Beak=yes & Teeth=few

B: Length=[3,5] & Gills=no & Beak=yes & Teeth=few

C: Length=[3,5] & Gills=no & Beak=yes

D: Gills=no & Beak=yes

E: Gills=no

F: true

Negatives
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Figure 4.6. (left) A path in the hypothesis space of Example 4.4. Concept A covers a single pos-

itive (p3); B covers one additional positive (p5); C covers all positives except p4; D is the LGG of

all five positive examples, but also covers a negative (n5), as does E. (right) The corresponding

coverage curve.

say that the data suggests that, in the context of concept E, the condition Beak= yes

is implicitly understood. A concept that includes all implicitly understood conditions

is called a closed concept. Essentially, a closed concept is the LGG of all examples that

it covers. For instance, D and E both cover all positives and n5; the LGG of those six

examples is Gills= no ∧ Beak= yes, which is D. Mathematically speaking we say that

the closure of E is D, which is also its own closure – hence the term ‘closed concept’.

This doesn’t mean that D and E are logically equivalent: on the contrary, since XD ⊂XE

– the extension of D is a proper subset of the extension of E – there exist instances in

X that are covered by E but not by D. However, none of these ‘witnesses’ are present

in the data, and thus, as far as the data is concerned, D and E are indistinguishable.

As can be seen in Figure 4.7, limiting attention to closed concepts can considerably

reduce the hypothesis space.

In this section we have looked at the problem of learning a single logical expression

that covers most or all positive examples and few or no negative examples. We have

seen that such concepts live in a hypothesis space ordered by generality, and learning

a concept can be understood as finding a good path through that hypothesis space.

Such a path has a natural interpretation as a ranker, which allows a connection with

coverage curves and ROC curves. On the other hand, insisting on a single conjunction

of feature-value literals is a strong limitation; in the next section we look at ways to

relax it.



118 4. Concept learning

true

Teeth=
m

any
B

eak=
yes

Length=
[3,4]

Length=
[3,5]

Length=
[4,5]

B
eak=

yes &
 Teeth=

m
any

Length=
[3,4] &

 Teeth=
m

any
Length=

[3,5] &
 Teeth=

m
any

Length=
[4,5] &

 Teeth=
m

any

G
ills=

no &
 B

eak=
yes &

 Teeth=
m

any
Length=

[3,4] &
 B

eak=
yes &

 Teeth=
m

any
Length=

[3,5] &
 B

eak=
yes &

 Teeth=
m

any
Length=

[4,5] &
 B

eak=
yes &

 Teeth=
m

any

Length=
[3,4] &

 G
ills=

no &
 B

eak=
yes &

 Teeth=
m

any
Length=

[3,5] &
 G

ills=
no &

 B
eak=

yes &
 Teeth=

m
any

Length=
[4,5] &

 G
ills=

no &
 B

eak=
yes &

 Teeth=
m

any

Length=
3 &

 G
ills=

no &
 B

eak=
yes &

 Teeth=
m

any
Length=

4 &
 G

ills=
no &

 B
eak=

yes &
 Teeth=

m
any

Length=
5 &

 G
ills=

no &
 B

eak=
yes &

 Teeth=
m

any

Length=
4 &

 B
eak=

yes &
 Teeth=

m
any

Length=
4 &

 G
ills=

yes &
 B

eak=
yes &

 Teeth=
m

any

Length=
5 &

 B
eak=

yes &
 Teeth=

m
any

Length=
5 &

 G
ills=

yes &
 B

eak=
yes &

 Teeth=
m

any

Length=
[4,5] &

 G
ills=

yes &
 B

eak=
yes &

 Teeth=
m

any

Length=
4 &

 Teeth=
m

any

Length=
4 &

 G
ills=

yes &
 Teeth=

m
any

Length=
4 &

 G
ills=

yes &
 B

eak=
no &

 Teeth=
m

any

Length=
5 &

 Teeth=
m

any

Length=
5 &

 G
ills=

yes &
 Teeth=

m
any

Length=
5 &

 G
ills=

yes &
 B

eak=
no &

 Teeth=
m

any

Length=
[4,5] &

 G
ills=

yes &
 Teeth=

m
any

Length=
[4,5] &

 G
ills=

yes &
 B

eak=
no &

 Teeth=
m

any

G
ills=

no &
 B

eak=
yes

Length=
[3,4] &

 B
eak=

yes
Length=

[3,5] &
 B

eak=
yes

Length=
[4,5] &

 B
eak=

yes

Length=
[3,4] &

 G
ills=

no &
 B

eak=
yes

Length=
[3,5] &

 G
ills=

no &
 B

eak=
yes

Length=
[4,5] &

 G
ills=

no &
 B

eak=
yes

G
ills=

no &
 B

eak=
yes &

 Teeth=
few

Length=
3 &

 G
ills=

no &
 B

eak=
yes

Length=
4 &

 G
ills=

no &
 B

eak=
yes

Length=
[3,4] &

 G
ills=

no &
 B

eak=
yes &

 Teeth=
few

Length=
3 &

 G
ills=

no &
 B

eak=
yes &

 Teeth=
few

Length=
4 &

 G
ills=

no &
 B

eak=
yes &

 Teeth=
few

Length=
[3,5] &

 G
ills=

no &
 B

eak=
yes &

 Teeth=
few

Length=
5 &

 G
ills=

no &
 B

eak=
yes

Length=
5 &

 G
ills=

no &
 B

eak=
yes &

 Teeth=
few

Length=
[4,5] &

 G
ills=

no &
 B

eak=
yes &

 Teeth=
few

Length=
4 &

 B
eak=

yes
Length=

5 &
 B

eak=
yes

Length=
4

Length=
5

Figu
re

4.7.
T

h
e

h
yp

o
th

esis
sp

ace
is

red
u

ced
co

n
sid

erab
ly

ifw
e

restrict
atten

tio
n

to
clo

sed
co

n
cep

ts.
T

h
ere

are
th

ree,rath
er

th
an

fo
u

r,co
m

p
lete

co
n

cep
ts

(in
green

),an
d

tw
o,rath

er
th

an
seven

,m
o

stgen
eralco

n
sisten

tclo
sed

co
n

cep
ts

(in
o

ran
ge).N

o
tice

th
atth

e
latter

are
b

o
th

sp
ecialisatio

n
s

o
fth

e
LG

G
o

fth
e

p
o

sitives,an
d

h
en

ce
itis

p
o

ssib
le

to
selecta

p
ath

th
atin

clu
d

es
b

o
th

th
e

LG
G

an
d

a
m

o
stgen

eralco
n

sisten
th

yp
o

th
esis.



4.3 Beyond conjunctive concepts 119

4.3 Beyond conjunctive concepts

Recall from Background 4.1 that a conjunctive normal form expression (CNF) is a con-

junction of disjunctions of literals, or equivalently, a conjunction of clauses. The con-

junctions of literals we have looked at until now are trivially in CNF where each disjunc-

tion consists of a single literal. CNF expressions are much more expressive, particularly

since literals can occur in several clauses. We will look at an algorithm for learning

Horn theories, where each clause A → B is a Horn clause, i.e., A is a conjunction of lit-

erals and B is a single literal. For ease of notation we will restrict attention to Boolean

features, and write F for F= true and ¬F for F= false. In the example below we adapt

the dolphins example to Boolean variables ManyTeeth (standing for Teeth=many),

Gills, Short (standing for Length= 3) and Beak.

When we looked at learning conjunctive concepts, the main intuition was that un-

covered positive examples led us to generalise by dropping literals from the conjunc-

tion, while covered negative examples require specialisation by adding literals. This

intuition still holds if we are learning Horn theories, but now we need to think ‘clauses’

rather than ‘literals’. Thus, if a Horn theory doesn’t cover a positive we need to drop all

clauses that violate the positive, where a clause A → B violates a positive if all literals

in the conjunction A are true in the example, and B is false.

Things get more interesting if we consider covered negatives, since then we need

to find one or more clauses to add to the theory in order to exclude the negative. For

example, suppose that our current hypothesis covers the negative

ManyTeeth ∧ Gills ∧ Short ∧ ¬Beak

To exclude it, we can add the following Horn clause to our theory:

ManyTeeth ∧ Gills ∧ Short→ Beak

While there are other clauses that can exclude the negative (e.g., ManyTeeth→ Beak)

this is the most specific one, and hence least at risk of also excluding covered positives.

However, the most specific clause excluding a negative is only unique if the negative

has exactly one literal set to false. For example, if our covered negative is

ManyTeeth ∧ Gills ∧ ¬Short ∧ ¬Beak

then we have a choice between the following two Horn clauses:

ManyTeeth ∧ Gills→ Short

ManyTeeth ∧ Gills→ Beak

Notice that, the fewer literals are set to true in the negative example, the more general

the clauses excluding the negative are.
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The approach of Algorithm 4.5 is to add all of these clauses to the hypothesis. How-

ever, the algorithm applies two clever tricks. The first is that it maintains a list S of

negative examples, from which it periodically rebuilds the hypothesis. The second is

that, rather than simply adding new negative examples to the list, it tries to find neg-

atives with fewer literals set to true, since this will result in more general clauses. This

is possible if we assume we have access to a membership oracle Mb which can tell us

whether a particular example is a member of the concept we’re learning or not. So in

line 7 of the algorithm we form the intersection of a new negative x and an existing one

s ∈ S – i.e., an example with only those literals set to true which are true in both x and

s – and pass the result z to the membership oracle to check whether it belongs to the

target concept. The algorithm also assumes access to an equivalence oracle Eq which

either tells us that our current hypothesis h is logically equivalent to the target formula

f , or else produces a counter-example that can be either a false positive (it is covered

by h but not by f ) or a false negative (it is covered by f but not by h).

Algorithm 4.5: Horn(Mb,Eq) – learn a conjunction of Horn clauses from member-

ship and equivalence oracles.

Input : equivalence oracle Eq; membership oracle Mb.

Output : Horn theory h equivalent to target formula f .

1 h ←true; // conjunction of Horn clauses, initially empty

2 S ←� ; // a list of negative examples, initially empty

3 while Eq(h) returns counter-example x do

4 if x violates at least one clause of h then // x is a false negative

5 specialise h by removing every clause that x violates

6 else // x is a false positive

7 find the first negative example s ∈ S such that (i) z = s∩x has fewer true

literals than s, and (ii) Mb(z) labels it as a negative;

8 if such an example exists then replace s in S with z, else append x to the

end of S;

9 h ←true;

10 for all s ∈ S do // rebuild h from S

11 p ←the conjunction of literals true in s;

12 Q ←the set of literals false in s;

13 for all q ∈Q do h ←h ∧ (p → q);

14 end

15 end

16 end

17 return h
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Example 4.5 (Learning a Horn theory). Suppose the target theory f is

(ManyTeeth ∧ Short→ Beak) ∧ (ManyTeeth ∧ Gills→ Short)

This theory has 12 positive examples: eight in which ManyTeeth is false; another

two in which ManyTeeth is true but both Gills and Short are false; and two more

in which ManyTeeth, Short and Beak are true. The negative examples, then, are

n1: ManyTeeth ∧ Gills ∧ Short ∧ ¬Beak
n2: ManyTeeth ∧ Gills ∧ ¬Short ∧ Beak

n3: ManyTeeth ∧ Gills ∧ ¬Short ∧ ¬Beak
n4: ManyTeeth ∧ ¬Gills ∧ Short ∧ ¬Beak

S is initialised to the empty list and h to the empty conjunction. We call

the equivalence oracle which returns a counter-example which has to be a false

positive (since every example satisfies our initial hypothesis), say n1 which vi-

olates the first clause in f . There are no negative examples in S yet, so we add

n1 to S (step 8 of Algorithm 4.5). We then generate a new hypothesis from

S (steps 9–13): p is ManyTeeth ∧ Gills ∧ Short and Q is {Beak}, so h becomes

(ManyTeeth ∧ Gills ∧ Short→ Beak). Notice that this clause is implied by our tar-

get theory: if ManyTeeth and Gills are true then so is Short by the second clause

of f ; but then so is Beak by f ’s first clause. But we need more clauses to exclude

all the negatives.

Now, suppose the next counter-example is the false positive n2. We form the

intersection with n1 which was already in S to see if we can get a negative exam-

ple with fewer literals set to true (step 7). The result is equal to n3 so the mem-

bership oracle will confirm this as a negative, and we replace n1 in S with n3. We

then rebuild h from S which gives (p is ManyTeeth ∧ Gills and Q is {Short,Beak})

(ManyTeeth ∧ Gills→ Short) ∧ (ManyTeeth ∧ Gills→ Beak)

Finally, assume that n4 is the next false positive returned by the equivalence

oracle. The intersection with n3 on S is actually a positive example, so instead

of intersecting with n3 we append n4 to S and rebuild h. This gives the previous

two clauses from n3 plus the following two from n4:

(ManyTeeth ∧ Short→ Gills) ∧ (ManyTeeth ∧ Short→ Beak)

The first of this second pair will subsequently be removed by a false negative from
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the equivalence oracle, leading to the final theory

(ManyTeeth ∧ Gills→ Short) ∧
(ManyTeeth ∧ Gills→ Beak) ∧

(ManyTeeth ∧ Short→ Beak)

which is logically equivalent (though not identical) to f .

The Horn algorithm combines a number of interesting new ideas. First, it is an

active learning algorithm: rather than learning from a provided data set, it constructs

its own training examples and asks the membership oracle to label them. Secondly, the

core of the algorithm is the list of cleverly chosen negative examples, from which the

hypothesis is periodically rebuilt. The intersection step is crucial here: if the algorithm

just remembered negatives, the hypothesis would consist of many specific clauses. It

can be shown that, in order to learn a theory consisting of m clauses and n Boolean

variables, the algorithm requires O(mn) equivalence queries and O(m2n) membership

queries. In addition, the runtime of the algorithm is quadratic in both m and n. While

this is probably prohibitive in practice, the Horn algorithm can be shown to always

successfully learn a Horn theory that is equivalent to the target theory. Furthermore,

if we don’t have access to an equivalence oracle the algorithm is still guaranteed to

‘almost always’ learn a Horn theory that is ‘mostly correct’. This will be made more

precise in Section 4.4.

Using first-order logic

Another way to move beyond conjunctive concepts defined by simple features is to

use a richer logical language. The languages we have been using so far are propo-

sitional: each literal is a proposition such as Gills= yes – standing for ‘the dolphin

has gills’ – from which larger expressions are built using logical connectives. First-

order predicate logic, or first-order logic for short, generalises this by building more

complex literals from predicates and terms. For example, a first-order literal could be

BodyPart(Dolphin42,PairOf(Gill)). Here, Dolphin42 and PairOf(Gill) are terms refer-

ring to objects: Dolphin42 is a constant, and PairOf(Gill) is a compound term consist-

ing of the function symbol PairOf and the term Gills. BodyPart is a binary predicate

forming a proposition (something that can be true or false) out of two terms. This

richer language brings with it a number of advantages:

� we can use terms such asDolphin42 to refer to individual objects we’re interested

in;
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� the structure of objects can be explicitly described; and

� we can introduce variables to refer to unspecified objects and quantify over them.

To illustrate the latter point, the first-order literal BodyPart(x,PairOf(Gill)) can be used

to refer to the set of all objects having a pair of gills; and the following expression ap-

plies universal quantification to state that everything with a pair of gills is a fish:

∀x : BodyPart(x,PairOf(Gill))→ Fish(x)

Since we modified the structure of literals, we need to revisit notions such as gener-

alisation and LGG. Remember that for propositional literals with internal disjunction

we used the function Combine-ID for merging two internal disjunctions: thus, for ex-

ample, LGG-Conj-ID(Length= [3,4],Length= [4,5]) returns Length= [3,4,5]. In order

to generalise first-order literals we use variables. Consider, for example, the two first-

order literalsBodyPart(Dolphin42,PairOf(Gill)) andBodyPart(Human123,PairOf(Leg)):

these generalise to BodyPart(x,PairOf(y)),signifying the set of objects that have a pair

of some unspecified body part. There is a well-defined algorithm for computing LGGs

of first-order literals called anti-unification, as it is the mathematical dual of the de-

ductive operation of unification.

Example 4.6 (Unification and anti-unification). Consider the following terms:

BodyPart(x,PairOf(Gill)) describing the objects that have a pair of

gills;

BodyPart(Dolphin42,PairOf(y)) describing the body parts that Dolphin42 has

a pair of.

The following two terms are their unification and anti-unification, respectively:

BodyPart(Dolphin42,PairOf(Gill)) describingDolphin42 as having a pair of gills;

BodyPart(x,PairOf(y)) describing the objects that have a pair of un-

specified body parts.

So we see that in first-order logic literals already have quite a rich structure, owing

to the use of variables. We will revisit this in Section 6.4 when we discuss how to learn

classification rules in first-order logic.
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4.4 Learnability

In this chapter we have seen several hypothesis languages for concept learning, includ-

ing conjunctions of literals (possibly with internal disjunction), conjunctions of Horn

clauses, and clauses in first-order logic. It is intuitively clear that these languages dif-

fer in expressivity: for example, a conjunction of literals is also a conjunction of Horn

clauses with empty if-part, so Horn theories are strictly more expressive than conjunc-

tive concepts. The downside of a more expressive concept language is that it may be

harder to learn. The field of computational learning theory studies exactly this ques-

tion of learnability.

To kick things off we need a learning model: a clear statement of what we mean if

we say that a concept language is learnable. One of the most common learning models

is the model of probably approximately correct (PAC) learning. PAC-learnability means

that there exists a learning algorithm that gets it mostly right, most of the time. The

model makes an allowance for mistakes on non-typical examples: hence the ‘mostly

right’ or ‘approximately correct’. The model also makes an allowance for sometimes

getting it completely wrong, for example when the training data contains lots of non-

typical examples: hence the ‘most of the time’ or ‘probably’. We assume that typical-

ity of examples is determined by some unspecified probability distribution D , and we

evaluate the error rate errD of a hypothesis with respect to this distribution D . More

formally, for arbitrary allowable error rate ε < 1/2 and failure rate δ < 1/2 we require

a PAC-learning algorithm to output with probability at least 1−δ a hypothesis h such

that errD < ε.

Let’s assume for the moment that our data is noise-free, and that the target hypoth-

esis is chosen from our hypothesis language. Furthermore, we assume our learner al-

ways outputs a hypothesis that is complete and consistent with the training sample.

There is a possibility that this zero training error is misleading, and that the hypothesis

is actually a ‘bad’ one, having a true error over the instance space that is larger than

ε. We just want to make sure that this happens with probability less than δ. I will now

show that this can be guaranteed by choosing the training sample large enough. Sup-

pose our hypothesis space H contains a single bad hypothesis, then the probability it

is complete and consistent on m independently sampled training examples is at most

(1−ε)m . Since 1−ε≤ e−ε for any 0≤ ε≤ 1, we have that this probability is at most e−mε.

We want this to be at most δ, which can be achieved by setting m ≥ 1
ε ln 1

δ . Now, H may

contain several bad hypotheses, say k ≤ |H |; then the probability that at least one of

them is complete and consistent on m independently sampled training examples is at

most k(1−ε)m ≤ |H |(1−ε)m ≤ |H |e−mε, which is at most δ if

m ≥ 1

ε

(
ln |H |+ ln

1

δ

)
(4.1)

This is called the sample complexity of a complete and consistent learner. The good
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news is that it is linear in 1/ε and logarithmic in 1/δ. Notice that this suggests that it is

exponentially cheaper to reduce the failure rate than it is to reduce the error. Any learn-

ing algorithm that takes time polynomial in 1/ε and 1/δ to process a single training ex-

ample will therefore also take polynomial training time, another requirement for PAC-

learnability. However, finding a complete and consistent hypothesis is not tractable in

many hypothesis languages.

Notice that the term ln |H | arose because in the worst case almost all hypotheses

in H are bad. However, in practice this means that the bound in Equation 4.1 is overly

pessimistic. Still, it allows us to see that concept languages whose size is exponential in

some parameter n are PAC-learnable. For example, the number of conjunctions over

n Boolean variables is 3n , since each variable can occur unnegated, negated or not at

all. Consequently, the sample complexity is (1/ε) (n ln3+ ln(1/δ)). For example, if we

set δ = 0.05 and ε = 0.1 then the sample complexity is approximately 10(n ·1.1+3) =
11n + 30. For our dolphin example with n = 4 this is clearly pessimistic, since there

are only 24 = 16 distinct examples! For larger n this is more realistic. Notice also that

the PAC model is distribution-free: the learner is not given any information about the

instance distribution D . This is another source for pessimism in the bound on the

sample complexity.

We may not always be able to output a complete and consistent hypothesis: for

instance, this may be computationally intractable, the target hypothesis may not be

representable in our hypothesis language, or the examples may be noisy. A reasonable

strategy would be to choose the hypothesis with lowest training error. A ‘bad’ hypoth-

esis is then one whose true error exceeds the training error by at least ε. Using some

results from probability theory, we find that this probability is at most e−2mε2
. As a re-

sult, the 1/ε factor in Equation 4.1 is replaced by 1/2ε2: for ε= 0.1 we thus need 5 times

as many training examples compared to the previous case.

It has already been mentioned that the |H | term is a weak point in the above analy-

sis. What we need is a measure that doesn’t just count the size of the hypothesis space,

but rather gives its expressivity or capacity in terms of classification. Such a measure

does in fact exist and is called the VC-dimension after its inventors Vladimir Vapnik and

Alexey Chervonenkis. We will illustrate the main idea by means of an example.

Example 4.7 (Shattering a set of instances). Consider the following instances:

m = ManyTeeth ∧ ¬Gills ∧ ¬Short ∧ ¬Beak
g = ¬ManyTeeth ∧ Gills ∧ ¬Short ∧ ¬Beak
s = ¬ManyTeeth ∧ ¬Gills ∧ Short ∧ ¬Beak
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b = ¬ManyTeeth ∧ ¬Gills ∧ ¬Short ∧ Beak

There are 16 different subsets of the set {m, g , s,b}. Can each of them be rep-

resented by its own conjunctive concept? The answer is yes: for every instance

we want to exclude, we add the corresponding negated literal to the conjunc-

tion. Thus, {m, s} is represented by ¬Gills ∧ ¬Beak, {g , s,b} is represented by

¬ManyTeeth, {s} is represented by¬ManyTeeth ∧ ¬Gills ∧ ¬Beak, and so on. We

say that this set of four instances is shattered by the hypothesis language of con-

junctive concepts.

The VC-dimension is the size of the largest set of instances that can be shattered

by a particular hypothesis language or model class. The previous example shows that

the VC-dimension of conjunctive concepts over d Boolean literals is at least d . It is in

fact equal to d , although this is harder to prove (since it involves showing that no set

of d +1 instances can be shattered). This measures the capacity of the model class for

representing concepts or binary classifiers. As another example, the VC-dimension of

a linear classifier in d dimensions is d +1: a threshold on the real line can shatter two

points but not three (since the middle point cannot be separated from the other two by

a single threshold); a straight line in a two-dimensional space can shatter three points

but not four; and so on.

The VC-dimension can be used to bound the difference between sample error and

true error of a hypothesis (which is the step where |H | appeared in our previous argu-

ments). Consequently, it can also be used to derive a bound on the sample complexity

of a complete and consistent learner in terms of the VC-dimension D rather than |H |:

m ≥ 1

ε
max

(
8D log2

13

ε
,4 log2

2

δ

)
(4.2)

We see that the bound is linear in D , where previously it was logarithmic in |H |. This is

natural, since to shatter D points we need at least 2D hypotheses, and so log2 |H | ≥D .

Furthermore, it is still logarithmic in 1/δ, but linear times logarithmic in 1/ε. Plug-

ging in our previous values of δ = 0.05 and ε = 0.1, we obtain a sample complexity of

max(562 ·D,213).

We conclude that the VC-dimension allows us to derive the sample complexity of

infinite concept classes, as long as they have finite VC-dimension. It is furthermore

worth mentioning a classical result from computational learning theory which says

that a concept class is PAC-learnable if and only if its VC-dimension is finite.



4.5 Concept learning: Summary and further reading 127

4.5 Concept learning: Summary and further reading

In this chapter we looked at methods for inductive concept learning: the process of

constructing a logical expression defining a set of objects from examples. This problem

was a focus of early work in artificial intelligence (Winston, 1970; Vere, 1975; Banerji,

1980), following the seminal work by psychologists Bruner, Goodnow and Austin (1956)

and Hunt, Marin and Stone (1966).

� In Section 4.1 we considered the structure of the hypothesis space: the set of pos-

sible concepts. Every hypothesis has an extension (the set of instances it covers),

and thus relationships between extensions such as subset relationships carry

over to the hypothesis space. This gives the hypothesis space a lattice structure:

a partial order with least upper bounds and greatest lower bounds. In particular,

the LGG is the least upper bound of a set of instances, and is the most conser-

vative generalisation that we can learn from the data. The concept was defined

in the context of first-order logic by Plotkin (1971), who showed that it was the

mathematical dual of the deductive operation of unification. We can extend the

hypothesis language with internal disjunction among values of a feature, which

creates a larger hypothesis space that still has a lattice structure. Internal dis-

junction is a common staple of attribute-value languages for learning following

the work of Michalski (1973). For further pointers regarding hypothesis language

and hypothesis space the reader is referred to (Blockeel, 2010a,b).

� Section 4.2 defined complete and consistent hypotheses as concepts that cover

all positive examples and no negative examples. The set of complete and consis-

tent concepts is called the version space, a notion introduced by Mitchell (1977).

The version space can be summarised by its least general and most general mem-

bers, since any concept between one least general hypothesis and another most

general one is also complete and consistent. Alternatively, we can describe the

version space by all paths from a least general to a most general hypothesis. Such

upward paths give rise to a coverage curve which describes the extension of each

concept on the path in terms of covered positives and negatives. Concept learn-

ing can then be seen as finding an upward path that goes through ROC heaven.

Syntactically different concepts can have the same extension in a particular data

set: a closed concept is the most specific one of these (technically, the LGG of

the instances in its extension). The notion is studied in formal concept anal-

ysis (Ganter and Wille, 1999) and was introduced in a data mining context by

Pasquier, Bastide, Taouil and Lakhal (1999); Garriga, Kralj and Lavrač (2008) in-

vestigate its usefulness for labelled data.

� In Section 4.3 we discussed the Horn algorithm for learning concepts described
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by conjunctions of Horn rules, first published in Angluin et al. (1992). The al-

gorithm makes use of a membership oracle, which can be seen as an early form

of active learning (Cohn, 2010; Dasgupta, 2010). Horn theories are superficially

similar to classification rule models which will be studied in Chapter 6. However,

there is an important difference, since those classification rules have the target

variable in the then-part of the rule, while the Horn clauses we are looking at here

can have any literal in the then-part. In fact, in this chapter the target variable is

not part of the logical language at all. This setting is sometimes called learning

from interpretations, since examples are truth-value assignments to our theory.

The classification rule setting is called learning from entailment, since in order

to find out whether a particular rule covers an example we need to apply logical

inference. De Raedt (1997) explains and explores the differences between these

two settings. Further introductions to first-order logic and its use in learning are

given by Flach (2010a) and De Raedt (2010).

� Section 4.4 briefly reviewed some basic concepts and results in learnability the-

ory. My account partly followed Mitchell (1997, Chapter 7); another excellent

introduction is given by Zeugmann (2010). PAC-learnability, which allows an er-

ror rate of ε and a failure rate of δ, was introduced in a seminal paper by Valiant

(1984). Haussler (1988) derived the sample complexity for complete and consis-

tent learners (Equation 4.1), which is linear in 1/ε and logarithmic in 1/δ and the

size of the hypothesis space. The VC-dimension as a measure of the capacity of

a hypothesis language was introduced by Vapnik and Chervonenkis (1971) in or-

der to quantify the difference between training error and true error. This allows a

statement of the sample complexity in terms of the VC-dimension (Equation 4.2)

which is due to Blumer, Ehrenfeucht, Haussler and Warmuth (1989). This same

paper proved that a model class is PAC-learnable if and only if its VC-dimension

is finite.

�



CHAPTER 5

Tree models

T
REE MODELS ARE among the most popular models in machine learning. For example,

the pose recognition algorithm in the Kinect motion sensing device for the Xbox game

console has decision tree classifiers at its heart (in fact, an ensemble of decision trees

called a random forest about which you will learn more in Chapter 11). Trees are ex-

pressive and easy to understand, and of particular appeal to computer scientists due

to their recursive ‘divide-and-conquer’ nature.

In fact, the paths through the logical hypothesis space discussed in the previous

chapter already constitute a very simple kind of tree. For instance, the feature tree in

Figure 5.1 (left) is equivalent to the path in Figure 4.6 (left) on p.117. This equivalence

is best seen by tracing the path and the tree from the bottom upward.

1. The left-most leaf of the feature tree represents the concept at the bottom of the

path, covering a single positive example.

2. The next concept up in the path generalises the literal Length= 3 into

Length= [3,5] by means of internal disjunction; the added coverage (one pos-

itive example) is represented by the second leaf from the left in the feature tree.

3. By dropping the condition Teeth= few we add another two covered positives.

4. Dropping the ‘Length’ condition altogether (or extending the internal disjunc-

tion with the one remaining value ‘4’) adds the last positive, and also a negative.

5. Dropping Beak= yes covers no additional examples (remember the discussion

129
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Gills

Beak

=no

[0+, 4–]

 =yes

Length

=yes

[0+, 0–]

 =no

Teeth

=[3,5]

[1+, 1–]

 ≠[3,5]

Length

=few

[2+, 0–]

=many

[1+, 0–]

=3

[1+, 0–]

=5

ĉ(x) = ⊕

Gills

Length

=no

ĉ(x) = ⊖

 =yes

Teeth

ĉ(x) = ⊖

=few

ĉ(x) = ⊕

=many

=3  =4

ĉ(x) = ⊕

 =5

Figure 5.1. (left) The path from Figure 4.6 on p.117, redrawn in the form of a tree. The coverage

numbers in the leaves are obtained from the data in Example 4.4. (right) A decision tree learned

on the same data. This tree separates the positives and negatives perfectly.

about closed concepts in the previous chapter).

6. Finally, dropping Gills= no covers the four remaining negatives.

We see that a path through the hypothesis space can be turned into an equivalent fea-

ture tree. To obtain a tree that is equivalent to the i -th concept from the bottom in the

path, we can either truncate the tree by combining the left-most i leaves into a single

leaf representing the concept; or we can label the left-most i leaves positive and the

remaining leaves negative, turning the feature tree into a decision tree.

Decision trees do not employ internal disjunction for features with more than two

values, but instead allow branching on each separate value. They also allow leaf la-

bellings that do not follow the left-to-right order of the leaves. Such a tree is shown in

Figure 5.1 (right). This tree can be turned into a logical expression in many different

ways, including:

(Gills= no ∧ Length= 3) ∨ (Gills= no ∧ Length= 4 ∧ Teeth=many)

∨ (Gills= no ∧ Length= 5)

Gills= no ∧ [Length= 3 ∨ (Length= 4 ∧ Teeth=many) ∨ Length= 5]

¬[(Gills= no ∧ Length= 4 ∧ Teeth= few) ∨ Gills= yes]

(Gills= yes ∨ Length= [3,5] ∨ Teeth=many) ∧ Gills= no

The first expression is in disjunctive normal form (DNF, see Background 4.1 on p.105)
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and is obtained by forming a disjunction of all paths from the root of the tree to leaves

labelled positive, where each path gives a conjunction of literals. The second expres-

sion is a simplification of the first using the distributive equivalence (A ∧ B) ∨ (A ∧C )≡
A ∧ (B ∨C ). The third expression is obtained by first forming a DNF expression repre-

senting the negative class, and then negating it. The fourth expression turns this into

CNF by using the De Morgan laws ¬(A ∧ B)≡¬A ∨ ¬B and ¬(A ∨ B)≡¬A ∧ ¬B .

There are many other logical expressions that are equivalent to the concept defined

by the decision tree. Perhaps it would be possible to obtain an equivalent conjunctive

concept? Interestingly, the answer to this question is no: some decision trees repre-

sent a conjunctive concept, but many trees don’t and this is one of them.1 Decision

trees are strictly more expressive than conjunctive concepts. In fact, since decision trees

correspond to DNF expressions, and since every logical expression can be equivalently

written in DNF, it follows that decision trees are maximally expressive: the only data

that they cannot separate is data that is inconsistently labelled, i.e., the same instance

appears twice with different labels. This explains why data that isn’t conjunctively sep-

arable, as in our example, can be separated by a decision tree.

There is a potential problem with using such an expressive hypothesis language.

Let Δ be the disjunction of all positive examples, then Δ is in disjunctive normal form.

Δ clearly covers all positives – in fact, Δ’s extension is exactly the set of positive exam-

ples. In other words, in the hypothesis space of DNF expressions (or of decision trees),

Δ is the LGG of the positive examples, but it doesn’t cover any other instances. So Δ

does not generalise beyond the positive examples, but merely memorises them – talk

about overfitting! Turning this argument around, we see that one way to avoid overfit-

ting and encourage learning is to deliberately choose a restrictive hypothesis language,

such as conjunctive concepts: in such a language, even the LGG operation typically

generalises beyond the positive examples. And if our language is expressive enough

to represent any set of positive examples, we must make sure that the learning algo-

rithm employs other mechanisms to force generalisation beyond the examples and

avoid overfitting – this is called the inductive bias of the learning algorithm. As we will

see, most learning algorithms that operate in expressive hypothesis spaces have an in-

ductive bias towards less complex hypotheses, either implicitly through the way the

hypothesis space is searched, or explicitly by incorporating a complexity penalty in the

objective function.

Tree models are not limited to classification but can be employed to solve almost

any machine learning task, including ranking and probability estimation, regression

and clustering. The tree structure that is common to all those models can be defined

1If we allowed the creation of new conjunctive features, we could actually represent this tree as the con-

junctive concept Gills= no ∧ F= false, where F ≡ Length= 4 ∧Teeth= few is a new conjunctive feature.

The creation of new features during learning is called constructive induction, and as shown here can extend

the representational power of a logical language.
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as follows.

Definition 5.1 (Feature tree). A feature tree is a tree such that each internal node

(the nodes that are not leaves) is labelled with a feature, and each edge emanating

from an internal node is labelled with a literal. The set of literals at a node is called

a split. Each leaf of the tree represents a logical expression, which is the conjunction

of literals encountered on the path from the root of the tree to the leaf. The extension

of that conjunction (the set of instances covered by it) is called the instance space

segment associated with the leaf. �

Essentially, a feature tree is a compact way of representing a number of conjunctive

concepts in the hypothesis space. The learning problem is then to decide which of the

possible concepts will be best to solve the given task. While rule learners (discussed in

the next chapter) essentially learn these concepts one at a time, tree learners perform

a top–down search for all these concepts at once.

Algorithm 5.1 gives the generic learning procedure common to most tree learners.

It assumes that the following three functions are defined:

Homogeneous(D) returns true if the instances in D are homogeneous enough to be

labelled with a single label, and false otherwise;

Label(D) returns the most appropriate label for a set of instances D ;

BestSplit(D,F ) returns the best set of literals to be put at the root of the tree.

These functions depend on the task at hand: for instance, for classification tasks a

set of instances is homogeneous if they are (mostly) of a single class, and the most

appropriate label would be the majority class. For clustering tasks a set of instances is

homogenous if they are close together, and the most appropriate label would be some

exemplar such as the mean (more on exemplars in Chapter 8).

Algorithm 5.1: GrowTree(D,F ) – grow a feature tree from training data.

Input : data D ; set of features F .

Output : feature tree T with labelled leaves.

1 if Homogeneous(D) then return Label(D) ; // Homogeneous, Label: see text

2 S ←BestSplit(D,F ) ; // e.g., BestSplit-Class (Algorithm 5.2)

3 split D into subsets Di according to the literals in S;

4 for each i do

5 if Di 
= � then Ti ←GrowTree(Di ,F ) else Ti is a leaf labelled with Label(D);

6 end

7 return a tree whose root is labelled with S and whose children are Ti
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Algorithm 5.1 is a divide-and-conquer algorithm: it divides the data into subsets,

builds a tree for each of those and then combines those subtrees into a single tree.

Divide-and-conquer algorithms are a tried-and-tested technique in computer science.

They are usually implemented recursively, because each subproblem (to build a tree

for a subset of the data) is of the same form as the original problem. This works as

long as there is a way to stop the recursion, which is what the first line of the algorithm

does. However, it should be noted that such algorithms are greedy: whenever there is a

choice (such as choosing the best split), the best alternative is selected on the basis of

the information then available, and this choice is never reconsidered. This may lead to

sub-optimal choices. An alternative would be to use a backtracking search algorithm,

which can return an optimal solution, at the expense of increased computation time

and memory requirements, but we will not explore that further in this book.

In the remainder of this chapter we will instantiate the generic Algorithm 5.1 to

classification, ranking and probability estimation, clustering and regression tasks.

5.1 Decision trees

As already indicated, for a classification task we can simply define a set of instances D

to be homogenous if they are all from the same class, and the function Label(D) will

then obviously return that class. Notice that in line 5 of Algorithm 5.1 we may be calling

Label(D) with a non-homogeneous set of instances in case one of the Di is empty, so

the general definition of Label(D) is that it returns the majority class of the instances

in D .2 This leaves us to decide how to define the function BestSplit(D,F ).

Let’s assume for the moment that we are dealing with Boolean features, so D is

split into D1 and D2. Let’s also assume we have two classes, and denote by D⊕ and

D� the positives and negatives in D (and likewise for D⊕
1 etc.). The question is how

to assess the utility of a feature in terms of splitting the examples into positives and

negatives. Clearly, the best situation is where D⊕
1 =D⊕ and D�

1 = �, or where D⊕
1 = �

and D�
1 = D�. In that case, the two children of the split are said to be pure. So we

need to measure the impurity of a set of n⊕ positives and n� negatives. One important

principle that we will adhere to is that the impurity should only depend on the relative

magnitude of n⊕ and n�, and should not change if we multiply both with the same

amount. This in turn means that impurity can be defined in terms of the proportion

ṗ = n⊕/(n⊕+n�), which we remember from Section 2.2 as the �empirical probability

of the positive class. Furthermore, impurity should not change if we swap the positive

and negative class, which means that it should stay the same if we replace ṗ with 1− ṗ.

We also want a function that is 0 whenever ṗ = 0 or ṗ = 1 and that reaches its maximum

2If there is more than one largest class we will make an arbitrary choice between them, usually uniformly

random.
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Figure 5.2. (left) Impurity functions plotted against the empirical probability of the positive

class. From the bottom: the relative size of the minority class, min(ṗ,1− ṗ); the Gini index,

2ṗ(1− ṗ); entropy, −ṗ log2 ṗ− (1− ṗ) log2(1− ṗ) (divided by 2 so that it reaches its maximum in

the same point as the others); and the (rescaled) square root of the Gini index,
√

ṗ(1− ṗ) – notice

that this last function describes a semi-circle. (right) Geometric construction to determine the

impurity of a split (Teeth= [many, few] from Example 5.1): ṗ is the empirical probability of the

parent, and ṗ1 and ṗ2 are the empirical probabilities of the children.

for ṗ = 1/2. The following functions all fit the bill.

Minority class min(ṗ,1− ṗ) – this is sometimes referred to as the error rate, as it mea-

sures the proportion of misclassified examples if the leaf was labelled with the

majority class; the purer the set of examples, the fewer errors this will make. This

impurity measure can equivalently be written as 1/2−|ṗ−1/2|.

Gini index 2ṗ(1− ṗ) – this is the expected error if we label examples in the leaf ran-

domly: positive with probability ṗ and negative with probability 1− ṗ. The prob-

ability of a false positive is then ṗ(1− ṗ) and the probability of a false negative

(1− ṗ)ṗ. 3

entropy−ṗ log2 ṗ− (1− ṗ) log2(1− ṗ) – this is the expected information, in bits, con-

veyed by somebody telling you the class of a randomly drawn example; the purer

the set of examples, the more predictable this message becomes and the smaller

the expected information.

A plot of these three impurity measures can be seen in Figure 5.2 (left), some of

them rescaled so that they all reach their maximum at (0.5,0.5). I have added a fourth

one: the square root of the Gini index, which I will indicate as
�

Gini, and which has an

advantage over the others, as we will see later. Indicating the impurity of a single leaf

D j as Imp(D j ), the impurity of a set of mutually exclusive leaves {D1, . . . ,Dl } is then

3When I looked up ‘Gini index’ on Wikipedia I was referred to a page describing the Gini coefficient, which

– in a machine learning context – is a linear rescaling of the AUC to the interval [−1,1]. This is quite a different

concept, and the only thing that the Gini index and the Gini coefficient have in common is that they were

both proposed by the Italian statistician Corrado Gini, so it is good to be aware of potential confusion.
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defined as a weighted average

Imp({D1, . . . ,Dl })=
l∑

j=1

|D j |
|D| Imp(D j ) (5.1)

where D =D1∪ . . .∪Dl . For a binary split there is a nice geometric construction to find

Imp({D1,D2}) given the empirical probabilities of the parent and the children, which is

illustrated in Figure 5.2 (right):

1. We first find the impurity values Imp(D1) and Imp(D2) of the two children on the

impurity curve (here the Gini index).

2. We then connect these two values by a straight line, as any weighted average of

the two must be on that line.

3. Since the empirical probability of the parent is also a weighted average of the

empirical probabilities of the children, with the same weights (i.e., ṗ = |D1|
|D| ṗ1+

|D2|
|D| ṗ2 – the derivation is given in Equation 5.2 on p.139), ṗ gives us the correct

interpolation point.

This construction will work with any of the impurity measures plotted in Figure 5.2

(left). Note that, if the class distribution in the parent is very skewed, the empirical

probability of both children may end up to the left or to the right of the ṗ = 0.5 vertical.

This isn’t a problem – except for the minority class impurity measure, as the geometric

construction makes it clear that all such splits will be evaluated as having the same

weighted average impurity. For this reason its use as an impurity measure is often

discouraged.

Example 5.1 (Calculating impurity). Consider again the data in Example 4.4 on

p.115. We want to find the best feature to put at the root of the decision tree. The

four features available result in the following splits:

Length= [3,4,5] [2+,0−][1+,3−][2+,2−]

Gills= [yes,no] [0+,4−][5+,1−]

Beak= [yes,no] [5+,3−][0+,2−]

Teeth= [many, few] [3+,4−][2+,1−]

Let’s calculate the impurity of the first split. We have three segments: the first

one is pure and so has entropy 0; the second one has entropy −(1/4) log2(1/4)−
(3/4) log2(3/4) = 0.5+0.31 = 0.81; the third one has entropy 1. The total entropy

is then the weighted average of these, which is 2/10·0+4/10·0.81+4/10·1= 0.72.

Similar calculations for the other three features give the following entropies:
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Gills 4/10 ·0+6/10 · (−(5/6) log2(5/6)− (1/6) log2(1/6)
)= 0.39;

Beak 8/10 · (−(5/8) log2(5/8)− (3/8) log2(3/8)
)+2/10 ·0= 0.76;

Teeth 7/10 · (−(3/7) log2(3/7)− (4/7) log2(4/7)
)

+3/10 · (−(2/3) log2(2/3)− (1/3) log2(1/3)
)= 0.97.

We thus clearly see that ‘Gills’ is an excellent feature to split on; ‘Teeth’ is poor;

and the other two are somewhere in between.

The calculations for the Gini index are as follows (notice that these are on a

scale from 0 to 0.5):

Length 2/10 ·2 · (2/2 ·0/2)+4/10 ·2 · (1/4 ·3/4)+4/10 ·2 · (2/4 ·2/4)= 0.35;

Gills 4/10 ·0+6/10 ·2 · (5/6 ·1/6)= 0.17;

Beak 8/10 ·2 · (5/8 ·3/8)+2/10 ·0= 0.38;

Teeth 7/10 ·2 · (3/7 ·4/7)+3/10 ·2 · (2/3 ·1/3)= 0.48.

As expected, the two impurity measures are in close agreement. See Figure 5.2

(right) for a geometric illustration of the last calculation concerning ‘Teeth’.

Adapting these impurity measures to k > 2 classes is done by summing the per-

class impurities in a one-versus-rest manner. In particular, k-class entropy is defined

as
∑k

i=1−ṗi log2 ṗi , and the k-class Gini index as
∑k

i=1 ṗi (1− ṗi ). In assessing the qual-

ity of a feature for splitting a parent node D into leaves D1, . . . ,Dl , it is customary to

look at the purity gain Imp(D)−Imp({D1, . . . ,Dl }). If purity is measured by entropy, this

is called the information gain splitting criterion, as it measures the increase in infor-

mation about the class gained by including the feature. However, note that Algorithm

5.1 only compares splits with the same parent, and so we can ignore the impurity of the

parent and search for the feature which results in the lowest weighted average impurity

of its children (Algorithm 5.2).

We now have a fully instantiated decision tree learning algorithm, so let’s see what

tree it learns on our dolphin data. We have already seen that the best feature to split on

at the root of the tree is ‘Gills’: the condition Gills= yes leads to a pure leaf [0+,4−] la-

belled negative, and a predominantly positive child [5+,1−]. For the next split we have

the choice between ‘Length’ and ‘Teeth’, as splitting on ‘Beak’ does not decrease the im-

purity. ‘Length’ results in a [2+,0−][1+,1−][2+,0−] split and ‘Teeth’ in a [3+,0−][2+,1−]

split; both entropy and Gini index consider the former purer than the latter. We then

use ‘Teeth’ to split the one remaining impure node. The resulting tree is the one shown

previously in Figure 5.1 on p.130, and reproduced in Figure 5.3 (left). We have learned



5.1 Decision trees 137

D: [2+, 0�]

A: Gills

B: Length

=no

C: [0+, 4�]

 =yes

E: Teeth

G: [0+, 1�]

=few

H: [1+, 0�]

=many

=3  =4

F: [2+, 0�]

 =5

Negatives

P
o

s
it
iv

e
s

p
1

,p
3

p
4

-5
p

1

n5 n1-4

AB

C

D

E

F

G

H

Figure 5.3. (left) Decision tree learned from the data in Example 4.4 on p.115. (right) Each inter-

nal and leaf node of the tree corresponds to a line segment in coverage space: vertical segments

for pure positive nodes, horizontal segments for pure negative nodes, and diagonal segments for

impure nodes.

our first decision tree!

The tree represents a partition of the instance space, and therefore also assigns a

class to the 14 instances that were not part of the training set – which is why we can

say that the tree generalises the training data. Leaf C leaves three feature values un-

specified, with a total of 3 ·2 ·2= 12 possible combinations of values; four of these were

supplied as training examples, so leaf C covers eight unlabelled instances and classifies

them as negative. Similarly, two unlabelled instances are classified as positive by leaf

Algorithm 5.2: BestSplit-Class(D,F ) – find the best split for a decision tree.

Input : data D ; set of features F .

Output : feature f to split on.

1 Imin ←1;

2 for each f ∈ F do

3 split D into subsets D1, . . . ,Dl according to the values v j of f ;

4 if Imp({D1, . . . ,Dl })< Imin then

5 Imin ←Imp({D1, . . . ,Dl });

6 fbest← f ;

7 end

8 end

9 return fbest
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D, and a further two by leaf F; one is classified as negative by leaf G, and the remain-

ing one as positive by leaf H. The fact that more unlabelled instances are classified as

negative (9) than as positive (5) is thus mostly due to leaf C: because it is a leaf high up

in the tree, it covers many instances. One could argue that the fact that four out of five

negatives have gills is the strongest regularity found in the data.

It is also worth tracing the construction of this tree in coverage space (Figure 5.3

(right)). Every node of the tree, internal or leaf, covers a certain number of positives and

negatives and hence can be plotted as a line segment in coverage space. For instance,

the root of the tree covers all positives and all negatives, and hence is represented by

the ascending diagonal A. Once we add our first split, segment A is replaced by segment

B (an impure node and hence diagonal) and segment C, which is pure and not split any

further. Segment B is further split into D (pure and positive), E (impure) and F (pure

and positive). Finally, E is split into two pure nodes.

This idea of a decision tree coverage curve ‘pulling itself up’ from the ascending di-

agonal in a divide-and-conquer fashion is appealing – but unfortunately it is not true

in general. The ordering of coverage curve segments is purely based on the class distri-

butions in the leaves and does not bear any direct relationship to the tree structure. To

understand this better, we will now look at how tree models can be turned into rankers

and probability estimators.

5.2 Ranking and probability estimation trees

Grouping classifiers such as decision trees divide the instance space into segments,

and so can be turned into rankers by learning an ordering on those segments. Unlike

some other grouping models, decision trees have access to the local class distributions

in the segments or leaves, which can directly be used to construct a leaf ordering that

is optimal for the training data. So, for instance, in Figure 5.3 this ordering is [D – F] – H

– G – C, resulting in a perfect ranking (AUC= 1). The ordering can simply be obtained

from the empirical probabilities ṗ, breaking ties as much as possible by giving prece-

dence to leaves covering a larger number of positives.4 Why is this ordering optimal?

Well, the slope of a coverage curve segment with empirical probability ṗ is ṗ/(1− ṗ);

since ṗ �→ ṗ
1−ṗ is a monotonic transformation (if ṗ > ṗ ′ then ṗ

1−ṗ >
ṗ ′

1−ṗ ′ ) sorting the

segments on non-increasing empirical probabilities ensures that they are also sorted

on non-increasing slope, and so the curve is convex. This is an important point, so

I’ll say it again: the ranking obtained from the empirical probabilities in the leaves of

a decision tree yields a convex ROC curve on the training data. As we shall see later in

4Tie breaking – although it does not alter the shape of the coverage curve and isn’t essential in that sense –

can also be achieved by subtracting ε� 1 from the number of positives covered. The Laplace correction also

breaks ties in favour of larger leaves but isn’t a monotonic transformation and so might change the shape of

the coverage curve.
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the book, some other grouping models including �rule lists (Section 6.1) share this

property, but no grading model does.

As already noted, the segment ordering cannot be deduced from the tree structure.

The reason is essentially that, even if we know the empirical probability associated with

the parent of a split, this doesn’t constrain the empirical probabilities of its children.

For instance, let [n⊕,n�] be the class distribution in the parent with n = n⊕ +n�, and

let [n⊕1 ,n�1 ] and [n⊕2 ,n�2 ] be the class distributions in the children, with n1 = n⊕1 +n�1
and n2 = n⊕2 +n�2 . We then have

ṗ = n⊕

n
= n1

n

n⊕1
n1

+ n2

n

n⊕2
n2

= n1

n
ṗ1+ n2

n
ṗ2 (5.2)

In other words, the empirical probability of the parent is a weighted average of the

empirical probabilities of its children; but this only tells us that ṗ1 ≤ ṗ ≤ ṗ2 or ṗ2 ≤ ṗ ≤
ṗ1. Even if the place of the parent segment in the coverage curve is known, its children

may come much earlier or later in the ordering.

Example 5.2 (Growing a tree). Consider the tree in Figure 5.4 (top). Each node is

labelled with the numbers of positive and negative examples covered by it: so, for

instance, the root of the tree is labelled with the overall class distribution (50 pos-

itives and 100 negatives), resulting in the trivial ranking [50+,100−]. The corre-

sponding one-segment coverage curve is the ascending diagonal (Figure 5.4 (bot-

tom)). Adding split (1) refines this ranking into [30+,35−][20+,65−], resulting in

a two-segment curve. Adding splits (2) and (3) again breaks up the segment cor-

responding to the parent into two segments corresponding to the children. How-

ever, the ranking produced by the full tree – [15+,3−][29+,10−][5+,62−][1+,25−]

– is different from the left-to-right ordering of its leaves, hence we need to reorder

the segments of the coverage curve, leading to the top-most, solid curve.

So, adding a split to a decision tree can be interpreted in terms of coverage curves

as the following two-step process:

� split the corresponding curve segment into two or more segments;

� reorder the segments on decreasing slope.

The whole process of growing a decision tree can be understood as an iteration of these

two steps; or alternatively as a sequence of splitting steps followed by one overall re-

ordering step. It is this last step that guarantees that the coverage curve is convex (on

the training data).
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Figure 5.4. (top) Abstract representation of a tree with numbers of positive and negative exam-

ples covered in each node. Binary splits are added to the tree in the order indicated. (bottom)

Adding a split to the tree will add new segments to the coverage curve as indicated by the arrows.

After a split is added the segments may need reordering, and so only the solid lines represent

actual coverage curves.

It is instructive to take this analysis a step further by considering all possible rank-

ings that can be constructed with the given tree. One way to do that is to consider the

tree as a feature tree, without any class labels, and ask ourselves in how many ways

we can label the tree, and what performance that would yield, given that we know the

numbers of positives and negatives covered in each leaf. In general, if a feature tree

has l leaves and we have c classes, then the number of possible labellings of leaves

with classes is cl ; in the example of Figure 5.4 this is 24 = 16. Figure 5.5 depicts these

16 labellings in coverage space. As you might expect, there is a lot of symmetry in this
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Figure 5.5. Graphical depiction of all possible labellings and all possible rankings that can be

obtained with the four-leaf decision tree in Figure 5.4. There are 24 = 16 possible leaf labellings;

e.g., ‘+−+−’ denotes labelling the first and third leaf from the left as+ and the second and fourth

leaf as −. Also indicated are some pairwise symmetries (dotted lines): e.g., +−+− and −+−+
are each other’s inverse and end up at opposite ends of the plot. There are 4!= 24 possible blue-

violet-red-orange paths through these points which start in −−−− and switch each leaf to + in

some order; these represent all possible four-segment coverage curves or rankings.

plot. For instance, labellings occur in pairs (say +−+− and −+−+) that occur in op-

posite locations in the plot (see if you can figure out what is meant by ‘opposite’ here).

We obtain a ranking by starting in −−−− in the lower left-hand corner, and switching

each leaf to+ in some order. For instance, the optimal coverage curve follows the order

−−−−,−−+−,+−+−,+−++,++++. For a tree with l leaves there are l ! permutations

of its leaves and thus l ! possible coverage curves (24 in our example).

If I were to choose a single image that would convey the essence of tree models, it

would be Figure 5.5. What it visualises is that the class distributions in the leaves of an

unlabelled feature tree can be used to turn one and the same tree into a decision tree,

a ranking tree, or a probability estimation tree:

� to turn a feature tree into a ranker, we order its leaves on non-increasing empiri-

cal probabilities, which is provably optimal on the training set;

� to turn the tree into a probability estimator, we predict the empirical probabili-

ties in each leaf, applying Laplace or m-estimate smoothing to make these esti-

mates more robust for small leaves;

� to turn the tree into a classifier, we choose the operating conditions and find the
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operating point that is optimal under those operating conditions.

The last procedure was explained in Section 2.2. We will illustrate it here, assuming

the training set class ratio clr = 50/100 is representative. We have a choice of five la-

bellings, depending on the expected cost ratio c = cFN/cFP of misclassifying a positive

in proportion to the cost of misclassifying a negative:

+−+− would be the labelling of choice if c = 1, or more generally if 10/29< c < 62/5;

+−++ would be chosen if 62/5< c < 25/1;

++++ would be chosen if 25/1< c; i.e., we would always predict positive if false neg-

atives are more than 25 times as costly as false positives, because then even

predicting positive in the second leaf would reduce cost;

−−+− would be chosen if 3/15< c < 10/29;

−−−− would be chosen if c < 3/15; i.e., we would always predict negative if false

positives are more than 5 times as costly as false negatives, because then even

predicting negative in the third leaf would reduce cost.

The first of these options corresponds to the majority class labelling, which is what

most textbook treatments of decision trees recommend, and also what I suggested

when I discussed the function Label(D) in the context of Algorithm 5.1. In many cir-

cumstances this will indeed be the most practical thing to do. However, it is important

to be aware of the underlying assumptions of such a labelling: these assumptions are

that the training set class distribution is representative and the costs are uniform; or,

more generally, that the product of the expected cost and class ratios is equal to the

class ratio as observed in the training set. (This actually suggests a useful device for

manipulating the training set to reflect an expected class ratio: to mimic an expected

class ratio of c, we can oversample the positive training examples with a factor c if c > 1,

or oversample the negatives with a factor 1/c if c < 1. We will return to this suggestion

below.)

So let’s assume that the class distribution is representative and that false negatives

(e.g., not diagnosing a disease in a patient) are about 20 times more costly than false

positives. As we have just seen, the optimal labelling under these operating condi-

tions is +−++, which means that we only use the second leaf to filter out negatives.

In other words, the right two leaves can be merged into one – their parent. Rather

aptly, the operation of merging all leaves in a subtree is called pruning the subtree.

The process is illustrated in Figure 5.6. The advantage of pruning is that we can sim-

plify the tree without affecting the chosen operating point, which is sometimes useful

if we want to communicate the tree model to somebody else. The disadvantage is that

we lose ranking performance, as illustrated in Figure 5.6 (bottom). Pruning is therefore

not recommended unless (i) you only intend to use the tree for classification, not for
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Figure 5.6. (top) To achieve the labelling +−++ we don’t need the right-most split, which can

therefore be pruned away. (bottom) Pruning doesn’t affect the chosen operating point, but it

does decrease the ranking performance of the tree.

ranking or probability estimation; and (ii) you can define the expected operating con-

ditions with sufficient precision. One popular algorithm for pruning decision trees is

called reduced-error pruning, and is given in Algorithm 5.3. The algorithm employs a

separate pruning set of labelled data not seen during training, as pruning will never im-

prove accuracy over the training data. However, if tree simplicity is not really an issue,

I recommend keeping the entire tree intact and choosing the operating point through

the leaf labelling only; this can similarly be done using a hold-out data set.

Sensitivity to skewed class distributions

I just mentioned in passing that one way to make sure the training set reflects the right

operating conditions is to duplicate positives or negatives so that the training set class

ratio is equal to the product of expected cost and class ratios in deployment of the

model. Effectively, this changes the aspect ratio of the rectangle representing the cov-
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erage space. The advantage of this method is that it is directly applicable to any model,

without need to interfere with search heuristics or evaluation measures. The disad-

vantage is that it will increase training time – and besides, it may not actually make a

difference for the model being learned. I will illustrate this with an example.

Example 5.3 (Cost-sensitivity of splitting criteria). Suppose you have 10 pos-

itives and 10 negatives, and you need to choose between the two splits

[8+,2−][2+,8−] and [10+,6−][0+,4−]. You duly calculate the weighted average

entropy of both splits and conclude that the first split is the better one. Just to be

sure, you also calculate the average Gini index, and again the first split wins. You

then remember somebody telling you that the square root of the Gini index was

a better impurity measure, so you decide to check that one out as well. Lo and

behold, it favours the second split...! What to do?

You then remember that mistakes on the positives are about ten times as

costly as mistakes on the negatives. You’re not quite sure how to work out the

maths, and so you decide to simply have ten copies of every positive: the splits

are now [80+,2−][20+,8−] and [100+,6−][0+,4−]. You recalculate the three split-

ting criteria and now all three favour the second split. Even though you’re slightly

bemused by all this, you settle for the second split since all three splitting criteria

are now unanimous in their recommendation.

So what is going on here? Let’s first look at the situation with the inflated numbers

of positives. Intuitively it is clear that here the second split is preferable, since one of

the children is pure and the other one is fairly good as well, though perhaps not as

Algorithm 5.3: PruneTree(T,D) – reduced-error pruning of a decision tree.

Input : decision tree T ; labelled data D .

Output : pruned tree T ′.
1 for every internal node N of T , starting from the bottom do

2 TN ←subtree of T rooted at N ;

3 DN ← {x ∈D|x is covered by N };

4 if accuracy of TN over DN is worse than majority class in DN then

5 replace TN in T by a leaf labelled with the majority class in DN ;

6 end

7 end

8 return pruned version of T
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good as [80+,2−]. But this situation changes if we have only one-tenth of the number

of positives, at least according to entropy and Gini index. Using notation introduced

earlier, this can be understood as follows. The Gini index of the parent is 2 n⊕
n

n�
n , and

the weighted Gini index of one of the children is n1
n 2

n⊕1
n1

n�1
n1

. So the weighted impurity

of the child in proportion to the parent’s impurity is
n⊕1 n�1 /n1

n⊕n�/n ; let’s call this relative im-

purity. The same calculations for
�

Gini give

� impurity of the parent:

√
n⊕

n

n�

n
;

� weighted impurity of the child:
n1

n

√
n⊕1
n1

n�1
n1

;

� relative impurity:

√
n⊕1 n�1
n⊕n�

.

The important thing to note is that this last ratio doesn’t change if we multiply all num-

bers involving positives with a factor c. That is,
�

Gini is designed to minimise relative

impurity, and thus is insensitive to changes in class distribution. In contrast, relative

impurity for the Gini index includes the ratio n1/n, which changes if we inflate the

number of positives. Something similar happens with entropy. As a result, these two

splitting criteria emphasise children covering more examples.

A picture will help to explain this further. Just as accuracy and average recall have

isometrics in coverage and ROC space, so do splitting criteria. Owing to their non-

linear nature, these isometrics are curved rather than straight. They also occur on ei-

ther side of the diagonal, as we can swap the left and right child without changing the

quality of the split. One might imagine the impurity landscape as a mountain looked

down on from above – the summit is a ridge along the ascending diagonal, represent-

ing the splits where the children have the same impurity as the parent. This mountain

slopes down on either side and reaches ground level in ROC heaven as well as its op-

posite number (‘ROC hell’), as this is where impurity is zero. The isometrics are the

contour lines of this mountain – walks around it at constant elevation.

Consider Figure 5.7 (top). The two splits among which you needed to choose in

Example 5.3 (before inflating the positives) are indicated as points in this plot. I have

drawn six isometrics in the top-left of the plot: two splits times three splitting criteria.

A particular splitting criterion prefers the split whose isometric is the highest (closest

to ROC heaven) of the two: you can see that only one of the three (
�

Gini) prefers the

split on the top-right. Figure 5.7 (bottom) demonstrates how this changes when in-

flating the positives with a factor 10 (a coverage plot would run off the page here, so I

have plotted this in ROC space with the grid indicating how the class distribution has

changed). Now all three splitting criteria prefer the top-right split, because the entropy
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Figure 5.7. (top) ROC isometrics for entropy in blue, Gini index in violet and
�

Gini in red

through the splits [8+,2−][2+,8−] (solid lines) and [10+,6−][0+,4−] (dotted lines). Only
�

Gini

prefers the second split. (bottom) The same isometrics after inflating the positives with a factor

10. All splitting criteria now favour the second split; the
�

Gini isometrics are the only ones that

haven’t moved.



5.2 Ranking and probability estimation trees 147

and Gini index ‘mountains’ have rotated clockwise (Gini index more so than entropy),

while the
�

Gini mountain hasn’t moved at all.

The upshot of all this is that if you learn a decision tree or probability estimation

tree using entropy or Gini index as impurity measure – which is what virtually all avail-

able tree learning packages do – then your model will change if you change the class

distribution by oversampling, while if you use
�

Gini you will learn the same tree each

time. More generally, entropy and Gini index are sensitive to fluctuations in the class dis-

tribution,
�

Gini isn’t. So which one should you choose? My recommendation echoes

the ones I gave for majority class labelling and pruning: use a distribution-insensitive

impurity measure such as
�

Gini unless the training set operating conditions are rep-

resentative.5

Let’s wrap up the discussion on tree models so far. How would you train a decision

tree on a given data set, you might ask me? Here’s a list of the steps I would take:

1. First and foremost, I would concentrate on getting good ranking behaviour, be-

cause from a good ranker I can get good classification and probability estima-

tion, but not necessarily the other way round.

2. I would therefore try to use an impurity measure that is distribution-insensitive,

such as
�

Gini; if that isn’t available and I can’t hack the code, I would resort to

oversampling the minority class to achieve a balanced class distribution.

3. I would disable pruning and smooth the probability estimates by means of the

Laplace correction (or the m-estimate).

4. Once I know the deployment operation conditions, I would use these to select

the best operating point on the ROC curve (i.e., a threshold on the predicted

probabilities, or a labelling of the tree).

5. (optional) Finally, I would prune away any subtree whose leaves all have the

same label.

Even though in our discussion we have mostly concentrated on binary classification

tasks, it should be noted that decision trees can effortlessly deal with more than two

classes – as, indeed, can any grouping model. As already mentioned, multi-class im-

purity measures simply sum up impurities for each class in a one-versus-rest manner.

The only step in this list that isn’t entirely obvious when there are more than two classes

is step 4: in this case I would learn a weight for each class as briefly explained in Section

3.1, or possibly combine it with step 5 and resort to reduced-error pruning (Algorithm

5.3) which might be already implemented in the package you’re using.

5It should be noted that it is fairly easy to make measures such as entropy and Gini index distribution-

insensitive as well: essentially, this would involve compensating for an observed class ratio clr 
= 1 by dividing

all counts of positives, or positive empirical probabilities, by clr.
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5.3 Tree learning as variance reduction

We will now consider how to adapt decision trees to regression and clustering tasks.

This will turn out to be surprisingly straightforward, and is based on the following idea.

Earlier, we defined the two-class Gini index 2ṗ(1− ṗ) of a leaf as the expected error

resulting from labelling instances in the leaf randomly: positive with probability ṗ and

negative with probability 1− ṗ. You can picture this as tossing a coin, prepared such

that it comes up heads with probability ṗ, to classify examples. Representing this as

a random variable with value 1 for heads and 0 for tails, the expected value of this

random variable is ṗ and its variance ṗ(1− ṗ) (look up ‘Bernoulli trial’ online if you

want to read up on this). This leads to an alternative interpretation of the Gini index as

a variance term: the purer the leaf, the more biased the coin will be, and the smaller the

variance. For k classes we simply add up the variances of all one-versus-rest random

variables.6

More specifically, consider a binary split into n1 and n2 = n −n1 examples with

empirical probabilities ṗ1 and ṗ2, then the weighted average impurity of these children

in terms of the Gini index is

n1

n
2ṗ1(1− ṗ1)+ n2

n
2ṗ2(1− ṗ2)= 2

(n1

n
σ2

1+
n2

n
σ2

2

)

where σ2
j is the variance of a Bernoulli distribution with success probability ṗ j . So,

finding a split with minimum weighted average Gini index is equivalent to minimising

weighted average variance (the factor 2 is common to all splits and so can be omitted),

and learning a decision tree boils down to partitioning the instance space such that

each segment has small variance.

Regression trees

In regression problems the target variable is continuous rather than binary, and in that

case we can define the variance of a set Y of target values as the average squared dis-

tance from the mean:

Var(Y )= 1

|Y |
∑

y∈Y
(y − y)2

where y = 1
|Y |
∑

y∈Y y is the mean of the target values in Y ; see Background 5.1 for some

useful properties of variance. If a split partitions the set of target values Y into mutually

exclusive sets {Y1, . . . ,Yl }, the weighted average variance is then

Var({Y1, . . . ,Yl })=
l∑

j=1

|Y j |
|Y | Var(Y j )=

l∑
j=1

|Y j |
|Y |

(
1

|Y j |
∑

y∈Y j

y2− y2
j

)
= 1

|Y |
∑

y∈Y
y2−

l∑
j=1

|Y j |
|Y | y2

j

(5.4)

6This implicitly assumes that the one-versus-rest variables are uncorrelated, which is not strictly true.
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The variance of a set of numbers X ⊆ R is defined as the average squared difference from

the mean:

Var(X )= 1

|X |
∑

x∈X
(x−x)2

where x = 1
|X |
∑

x∈X x is the mean of X . Expanding (x − x)2 = x2 − 2xx + x2 this can be

written as

Var(X )= 1

|X |

( ∑
x∈X

x2−2x
∑

x∈X
x+ ∑

x∈X
x2

)
= 1

|X |

( ∑
x∈X

x2−2x|X |x+|X |x2

)
= 1

|X |
∑

x∈X
x2−x2

(5.3)

So the variance is the difference between the mean of the squares and the square of the

mean.

It is sometimes useful to consider the average squared difference from another value x′ ∈
R, which can similarly be expanded:

1

|X |
∑

x∈X
(x−x′)2 = 1

|X |

( ∑
x∈X

x2−2x′|X |x+|X |x′2
)
=Var(X )+ (x′ −x)2

The last step follows because from Equation 5.3 we have 1
|X |
∑

x∈X x2 =Var(X )+x2.

Another useful property is that the average squared difference between any two elements

of X is twice the variance:

1

|X |2
∑

x′∈X

∑
x∈X

(x−x′)2 = 1

|X |
∑

x ′∈X
(Var(X )+ (x′ −x)2)=Var(X )+ 1

|X |
∑

x ′∈X
(x′ −x)2 = 2Var(X )

If X ⊆ Rd is a set of d-vectors of numbers, we can define the variance Vari (X ) for each of

the d coordinates. We can then interpret the sum of variances
∑d

i=1 Vari (X ) as the average

squared Euclidean distance of the vectors in X to their vector mean x= 1
|X |
∑

x∈X x.

(You will sometimes see sample variance defined as 1
|X |−1

∑
x∈X (x−x)2, which is a some-

what larger value. This version arises if we are estimating the variance of a population

from which X is a random sample: normalising by |X | would underestimate the popula-

tion variance because of differences between the sample mean and the population mean.

Here, we are only concerned with assessing the spread of the given values X and not with

some unknown population, and so we can ignore this issue.)

Background 5.1. Variations on variance.

So, in order to obtain a regression tree learning algorithm, we replace the impurity

measure Imp in Algorithm 5.2 with the function Var. Notice that 1
|Y |
∑

y∈Y y2 is con-

stant for a given set Y , and so minimising variance over all possible splits of a given

parent is the same as maximising the weighted average of squared means in the chil-
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Model

Leslie

=A100

f�(x)=4513

=B3

f�(x)=77

 =E122
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 =M102
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=T202

f�(x)=1900

=yes
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f �(x)=185

 =no

Figure 5.8. A regression tree learned from the data in Example 5.4.

dren. The function Label(Y ) is similarly adapted to return the mean value in Y , and

the function Homogeneous(Y ) returns true if the variance of the target values in Y is

zero (or smaller than a low threshold).

Example 5.4 (Learning a regression tree). Imagine you are a collector of vintage

Hammond tonewheel organs. You have been monitoring an online auction site,

from which you collected some data about interesting transactions:

# Model Condition Leslie Price

1. B3 excellent no 4513

2. T202 fair yes 625

3. A100 good no 1051

4. T202 good no 270

5. M102 good yes 870

6. A100 excellent no 1770

7. T202 fair no 99

8. A100 good yes 1900

9. E112 fair no 77

From this data, you want to construct a regression tree that will help you deter-

mine a reasonable price for your next purchase.

There are three features, hence three possible splits:
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Model= [A100,B3,E112,M102,T202] [1051,1770,1900][4513][77][870][99,270,625]

Condition= [excellent,good, fair] [1770,4513][270,870,1051,1900][77,99,625]

Leslie= [yes,no] [625,870,1900][77,99,270,1051,1770,4513]

The means of the first split are 1574, 4513, 77, 870 and 331, and the weighted

average of squared means is 3.21 ·106. The means of the second split are 3142,

1023 and 267, with weighted average of squared means 2.68·106; for the third split

the means are 1132 and 1297, with weighted average of squared means 1.55 ·106.

We therefore branch on Model at the top level. This gives us three single-instance

leaves, as well as three A100s and three T202s.

For the A100s we obtain the following splits:

Condition= [excellent,good, fair] [1770][1051,1900][]

Leslie= [yes,no] [1900][1051,1770]

Without going through the calculations we can see that the second split results in

less variance (to handle the empty child, it is customary to set its variance equal

to that of the parent). For the T202s the splits are as follows:

Condition= [excellent,good, fair] [][270][99,625]

Leslie= [yes,no] [625][99,270]

Again we see that splitting on Leslie gives tighter clusters of values. The learned

regression tree is depicted in Figure 5.8.

Regression trees are susceptible to overfitting. For instance, if we have exactly one

example for each Hammond model then branching on Model will reduce the average

variance in the children to zero. The data in Example 5.4 is really too sparse to learn

a good regression tree. Furthermore, it is a good idea to set aside a pruning set and

to apply reduced-error pruning, pruning away a subtree if the average variance on the

pruning set is lower without the subtree than with it (see Algorithm 5.3 on p.144). It

should also be noted that predicting a constant value in a leaf is a very simple strategy,

and methods exist to learn so-called model trees, which are trees with linear regression

models in their leaves (�linear regression is explained in Chapter 7). In that case, the

splitting criterion would be based on correlation of the target variable with the regres-

sor variables, rather than simply on variance.
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Clustering trees

The simple kind of regression tree considered here also suggests a way to learn cluster-

ing trees. This is perhaps surprising, since regression is a supervised learning problem

while clustering is unsupervised. The key insight is that regression trees find instance

space segments whose target values are tightly clustered around the mean value in the

segment – indeed, the variance of a set of target values is simply the (univariate) av-

erage squared Euclidean distance to the mean. An immediate generalisation is to use

a vector of target values, as this doesn’t change the mathematics in an essential way.

More generally yet, we can introduce an abstract function Dis : X ×X → R that mea-

sures the distance or dissimilarity of any two instances x, x ′ ∈X , such that the higher

Dis(x, x ′) is, the less similar x and x ′ are. The cluster dissimilarity of a set of instances

D is then calculated as

Dis(D)= 1

|D|2
∑

x∈D

∑
x′∈D

Dis(x, x ′) (5.5)

The weighted average cluster dissimilarity over all children of a split then gives the split

dissimilarity, which can be used to inform BestSplit(D,F ) in the �GrowTree algorithm

(Algorithm 5.1 on p.132).

Example 5.5 (Learning a clustering tree using a dissimilarity matrix).

Assessing the nine transactions on the online auction site from Example

5.4, using some additional features such as reserve price and number of bids

(these features do not matter at the moment but are shown in Example 5.6), you

come up with the following dissimilarity matrix:

0 11 6 13 10 3 13 3 12

11 0 1 1 1 3 0 4 0

6 1 0 2 1 1 2 2 1

13 1 2 0 0 4 0 4 0

10 1 1 0 0 3 0 2 0

3 3 1 4 3 0 4 1 3

13 0 2 0 0 4 0 4 0

3 4 2 4 2 1 4 0 4

12 0 1 0 0 3 0 4 0

This shows, for instance, that the first transaction is very different from the other

eight. The average pairwise dissimilarity over all nine transactions is 2.94.

Using the same features from Example 5.4, the three possible splits are (now

with transaction number rather than price):
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Model= [A100,B3,E112,M102,T202] [3,6,8][1][9][5][2,4,7]

Condition= [excellent,good, fair] [1,6][3,4,5,8][2,7,9]

Leslie= [yes,no] [2,5,8][1,3,4,6,7,9]

The cluster dissimilarity among transactions 3, 6 and 8 is 1
32 (0+1+2+1+0+1+2+

1+0)= 0.89; and among transactions 2, 4 and 7 it is 1
32 (0+1+0+1+0+0+0+0+0)=

0.22. The other three children of the first split contain only a single element and

so have zero cluster dissimilarity. The weighted average cluster dissimilarity of

the split is then 3/9 ·0.89+1/9 ·0+1/9 ·0+1/9 ·0+3/9 ·0.22= 0.37. For the second

split, similar calculations result in a split dissimilarity of 2/9 ·1.5+4/9 ·1.19+3/9 ·
0= 0.86, and the third split yields 3/9 ·1.56+6/9 ·3.56= 2.89. The Model feature

thus captures most of the given dissimilarities, while the Leslie feature is virtually

unrelated.

Most of the caveats of regression trees also apply to clustering trees: smaller clusters

tend to have lower dissimilarity, and so it is easy to overfit. Setting aside a pruning set

to remove the lower splits if they don’t improve the cluster coherence on the pruning

set is recommended. Single examples can dominate: in the above example, removing

the first transaction reduces the overall pairwise dissimilarity from 2.94 to 1.5, and so

it will be hard to beat a split that puts that transaction in a cluster of its own.

An interesting question is: how should the leaves of a clustering tree be labelled?

Intuitively, it makes sense to label a cluster with its most representative instance. We

can define an instance as most representative if its total dissimilarity to all other in-

stances is lowest – this is defined as the medoid in Chapter 8. For instance, in the A100

cluster transaction 6 is most representative because its dissimilarity to 3 and 8 is 1,

whereas the dissimilarity between 3 and 8 is 2. Likewise, in the T202 cluster transac-

tion 7 is most representative. However, there is no reason why this should always be

uniquely defined.

A commonly encountered scenario, which both simplifies the calculations involved

in determining the best split and provides a unique cluster label, is when the dissim-

ilarities are Euclidean distances derived from numerical features. As shown in Back-

ground 5.1, if Dis(x, x ′) is squared Euclidean distance, then Dis(D) is twice the average

squared Euclidean distance to the mean. This simplifies calculations because both the

mean and average squared distance to the mean can be calculated in O(|D|) steps (a

single sweep through the data), rather than the O(|D|2) required if all we have is a dis-

similarity matrix. In fact, the average squared Euclidean distance is simply the sum of

the variances of the individual features.
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Model
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(45, 30, 22)

=B3

(1, 0, 5)
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(3.3, 0, 4.3)
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Figure 5.9. A clustering tree learned from the data in Example 5.6 using Euclidean distance on

the numerical features.

Example 5.6 (Learning a clustering tree with Euclidean distance). We extend

our Hammond organ data with two new numerical features, one indicating the

reserve price and the other the number of bids made in the auction. Sales price

and reserve price are expressed in hundreds of pounds in order to give the three

numerical features roughly equal weight in the distance calculations.

Model Condition Leslie Price Reserve Bids

B3 excellent no 45 30 22

T202 fair yes 6 0 9

A100 good no 11 8 13

T202 good no 3 0 1

M102 good yes 9 5 2

A100 excellent no 18 15 15

T202 fair no 1 0 3

A100 good yes 19 19 1

E112 fair no 1 0 5

The means of the three numerical features are (13.3,8.6,7.9) and their variances

are (158,101.8,48.8). The average squared Euclidean distance to the mean is

then the sum of these variances, which is 308.6 (if preferred we can double

this number to obtain the cluster dissimilarity as defined in Equation 5.5). For

the A100 cluster these vectors are (16,14,9.7) and (12.7,20.7,38.2), with average

squared distance to the mean 71.6; for the T202 cluster they are (3.3,0,4.3) and

(4.2,0,11.6), with average squared distance 15.8. Using this split we can construct

a clustering tree whose leaves are labelled with the mean vectors (Figure 5.9).
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In this example we used categorical features for splitting and numerical features

for distance calculations. Indeed, in all tree examples considered so far we have only

used categorical features for splitting.7 In practice, numerical features are frequently

used for splitting: all we need to do is find a suitable threshold t so that feature F can

be turned into a binary split with conditions F ≥ t and F < t . Finding the optimal split

point is closely related to �discretisation of numerical features, a topic we will look at

in detail in Chapter 10. For the moment, the following observations give some idea

how we can learn a threshold on a numerical feature:

� Although in theory there are infinitely many possible thresholds, in practice we

only need to consider values separating two examples that end up next to each

other if we sort the training examples on increasing (or decreasing) value of the

feature.

� We only consider consecutive examples of different class if our task is classifi-

cation, whose target values are sufficiently different if our task is regression, or

whose dissimilarity is sufficiently large if our task is clustering.

� Each potential threshold can be evaluated as if it were a distinct binary feature.

5.4 Tree models: Summary and further reading

Tree-based data structures are ubiquitous in computer science, and the situation is no

different in machine learning. Tree models are concise, easy to interpret and learn,

and can be applied to a wide range of tasks, including classification, ranking, proba-

bility estimation, regression and clustering. The tree-based classifier for human pose

recognition in the Microsoft Kinect motion sensing device is described in Shotton et al.

(2011).

� I introduced the feature tree as the common core for all these tree-based models,

and the recursive GrowTree algorithm as a generic divide-and-conquer algorithm

that can be adapted to each of these tasks by suitable choices for the functions

that test whether a data set is sufficiently homogeneous, find a suitable label if it

is, and find the best feature to split on if it isn’t.

� Using a feature tree to predict class labels turns them into decision trees, the

subject of Section 5.1. There are two classical accounts of decision trees in ma-

chine learning, which are very similar algorithmically but differ in details such as

heuristics and pruning strategies. Quinlan’s approach was to use entropy as im-

purity measure, and progressed from the ID3 algorithm (Quinlan, 1986), which

7Categorical features are features with a relatively small set of discrete values. Technically, they distinguish

themselves from numerical features by not having a scale or an ordering. This is further explored in Chapter

10.
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itself was inspired by Hunt, Marin and Stone (1966), to the sophisticated C4.5

system (Quinlan, 1993). The CART approach stands for ‘classification and regres-

sion trees’ and was developed by Breiman, Friedman, Olshen and Stone (1984);

it uses the Gini index as impurity measure. The
�

Gini impurity measure was

introduced by Dietterich, Kearns and Mansour (1996), and is hence sometimes

referred to as DKM . The geometric construction to find Imp({D1,D2}) in Figure

5.2 (right) was also inspired by that paper.

� Employing the empirical distributions in the leaves of a feature tree in order to

build rankers and probability estimators as described in Section 5.2 is a much

more recent development (Ferri et al., 2002; Provost and Domingos, 2003). Ex-

perimental results demonstrating that better probability estimates are obtained

by disabling tree pruning and smoothing the empirical probabilities by means

of the Laplace correction are presented in the latter paper and corroborated by

Ferri et al. (2003). The extent to which decision tree splitting criteria are insensi-

tive to unbalanced classes or misclassification costs was studied and explained

by Drummond and Holte (2000) and Flach (2003). Of the three splitting criteria

mentioned above, only
�

Gini is insensitive to such class and cost imbalance.

� Tree models are grouping models that aim to minimise diversity in their leaves,

where the appropriate notion of diversity depends on the task. Very often diver-

sity can be interpreted as some kind of variance, an idea that already appeared

in (Breiman et al., 1984) and was revisited by Langley (1994), Kramer (1996) and

Blockeel, De Raedt and Ramon (1998), among others. In Section 5.3 we saw how

this idea can be used to learn regression and clustering trees (glossing over many

important details, such as when we should stop splitting nodes).

It should be kept in mind that the increased expressivity of tree models compared

with, say, conjunctive concepts means that we should safeguard ourselves against over-

fitting. Furthermore, the greedy divide-and-conquer algorithm has the disadvantage

that small changes in the training data may lead to a different choice of the feature at

the root of the tree, which will influence the choice of feature at subsequent splits. We

will see in Chapter 11 how methods such as bagging can be applied to help reduce this

kind of model variance.

�



CHAPTER 6

Rule models

R
ULE MODELS ARE the second major type of logical machine learning models. Generally

speaking, they offer more flexibility than tree models: for instance, while decision tree

branches are mutually exclusive, the potential overlap of rules may give additional in-

formation. This flexibility comes at a price, however: while it is very tempting to view a

rule as a single, independent piece of information, this is often not adequate because

of the way the rules are learned. Particularly in supervised learning, a rule model is

more than just a set of rules: the specification of how the rules are to be combined to

form predictions is a crucial part of the model.

There are essentially two approaches to supervised rule learning. One is inspired

by decision tree learning: find a combination of literals – the body of the rule, which is

what we previously called a concept – that covers a sufficiently homogeneous set of ex-

amples, and find a label to put in the head of the rule. The second approach goes in the

opposite direction: first select a class you want to learn, and then find rule bodies that

cover (large subsets of) the examples of that class. The first approach naturally leads to

a model consisting of an ordered sequence of rules – a rule list – as will be discussed in

Section 6.1. The second approach treats collections of rules as unordered rule sets and

is the topic of Section 6.2. We shall see how these models differ in the way they han-

dle rule overlap. The third section of the chapter covers discovery of subgroups and

association rules.

157
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Figure 6.1. ROC isometrics for entropy (rescaled to have a maximum value of 1/2), Gini index

and minority class. The grey dotted symmetry line is defined by ṗ = 1/2: each isometric has

two parts, one above the symmetry line (where impurity decreases with increasing empirical

probability ṗ) and its mirror image below the symmetry line (where impurity is proportional to

ṗ). If these impurity measures are used as search heuristic, as they are in rule learning, only

the shape of the isometrics matters but not the associated impurity values, and hence all three

impurity measures are equivalent.

6.1 Learning ordered rule lists

The key idea of this kind of rule learning algorithm is to keep growing a conjunctive rule

body by adding the literal that most improves its homogeneity. That is, we construct

a downward path through the hypothesis space, of the kind discussed in Section 4.2,

and we stop as soon as some homogeneity criterion is satisfied. It is natural to mea-

sure homogeneity in terms of purity, as we did with decision trees. You might think

that adding a literal to a rule body is much the same as adding a binary split to a deci-

sion tree, as the added literal splits the instances covered by the original rule body in

two groups: those instances for which the new literal is true, and those for which the

new literal is false. However, one key difference is that in decision tree learning we are

interested in the purity of both children, which is why we use the weighted average im-

purity as our search heuristic when constructing the tree. In rule learning, on the other

hand, we are only interested in the purity of one of the children: the one in which the

added literal is true. It follows that we can directly use any of the impurity measures

we considered in the previous chapter (see Figure 5.2 on p.134 if you want to remind

yourself which they are), without the need for averaging.
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In fact, it doesn’t even matter which of those impurity measures we use to guide the

search, since they will all give the same result. To see this, notice that the impurity of a

concept decreases with the empirical probability ṗ (the relative frequency of covered

positives) if ṗ > 1/2 and increases with ṗ if ṗ < 1/2; see Figure 6.1. Whether this in-

crease or decrease is linear or not matters if we are averaging the impurities of several

concepts, as in decision tree learning, but not if we are evaluating single concepts. In

other words, the difference between these impurity measures vanishes in rule learn-

ing, and we might as well take the proportion of the minority class min(ṗ,1− ṗ) (or, if

you prefer, 1/2−|ṗ−1/2|), which is arguably the simplest, as our impurity measure of

choice in this section. Just keep in mind that if other authors use entropy or Gini index

to compare the impurity of literals or rule bodies this will give the same results (not in

terms of impurity values but in terms of which one is best).

We introduce the main algorithm for learning rule lists by means of an example.

Example 6.1 (Learning a rule list). Consider again our small dolphins data set

with positive examples

p1: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

p2: Length= 4 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

p3: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

p4: Length= 5 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

p5: Length= 5 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

and negatives

n1: Length= 5 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many

n2: Length= 4 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many

n3: Length= 5 ∧ Gills= yes ∧ Beak= no ∧ Teeth=many

n4: Length= 4 ∧ Gills= yes ∧ Beak= no ∧ Teeth=many

n5: Length= 4 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

The nine possible literals are shown with their coverage counts in Figure 6.2 (top).

Three of these are pure; in the impurity isometrics plot in Figure 6.2 (bottom)

they end up on the x-axis and y-axis. One of the literals covers two positives and

two negatives, and therefore has the same impurity as the overall data set; this

literal ends up on the ascending diagonal in the coverage plot.

Although impurity in itself does not distinguish between pure literals (we will re-

turn to this point later), one could argue that Gills= yes is the best of the three as it

covers more examples, so let’s formulate our first rule as:

·if Gills= yes then Class=�·
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Figure 6.2. (top) All literals with their coverage counts on the data in Example 6.1. The ones

in green (red) are pure for the positive (negative) class. (bottom) The nine literals plotted as

points in coverage space, with their impurity values indicated by impurity isometrics (away from

the ascending diagonal is better). Impurity values are colour-coded: towards green if ṗ > 1/2,

towards red if ṗ < 1/2, and orange if ṗ = 1/2 (on a 45 degree isometric). The violet arrow indicates

the selected literal, which excludes all five positives and one negative.

The corresponding coverage point is indicated by the arrow in Figure 6.2 (bottom). You

can think of this arrow as the right-most bit of the coverage curve that results if we keep

on following a downward path through the hypothesis space by adding literals. In this

case we are not interested in following the path further because the concept we found

is already pure (we shall see examples later where we have to add several literals before

we hit one of the axes). One new thing that we haven’t seen before is that this coverage

curve lies below the diagonal – this is a consequence of the fact that we haven’t fixed the

class in advance, and therefore we are just as happy diving deep beneath the ascending
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Figure 6.3. (left) Revised coverage counts after removing the four negative examples covered by

the first rule found (literals not covering any examples are omitted). (right) We are now operating

in the right-most ‘slice’ of Figure 6.2 on p.160.

diagonal as we would be flying high above it. Another way of thinking about this is that

if we swap the labels this affects the heads but not the bodies of the learned rules.

Most rule learning algorithms now proceed as follows: they remove the examples

covered by the rule just learned from consideration, and proceed with the remaining

examples. This strategy is called separate-and-conquer, in analogy with the divide-

and-conquer strategy of decision trees (the difference is that in separate-and-conquer

we end up with one remaining subproblem rather than several as in divide-and-conquer).

So we are left with five positive examples and one negative, and we again search for lit-

erals with minimum impurity. As is shown in Figure 6.3, we can understand this as

working in a smaller coverage space. After going through the numbers, we find the

next rule learned is

·if Teeth=many then Class=⊕·

As I mentioned earlier, we should be cautious when interpreting this rule on its own, as

against the original data set it actually covers more negatives than positives! In other

words, the rule implicitly assumes that the previous rule doesn’t ‘fire’; in the final rule

model we will precede it with ‘else’.

We are now left with two positives and one negative (Figure 6.4). This time it makes

sense to choose the rule that covers the single remaining negative, which is

·if Length= 4 then Class=�·

Since the remaining examples are all positive, we can invoke a default rule to cover

those examples for which all other rules fail. Put together, the learned rule model is
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Figure 6.4. (left) The third rule covers the one remaining negative example, so that the remaining

positives can be swept up by a default rule. (right) This will collapse the coverage space.

then as follows:
·if Gills= yes then Class=�·
·else if Teeth=many then Class=⊕·
·else if Length= 4 then Class=�·
·else Class=⊕·

Organising rules in a list is one way of dealing with overlaps among rules. For ex-

ample, we know from the data that there are several examples with both Gills= yes and

Teeth=many, but the rule list above tells us that the first rule takes precedence in such

cases. Alternatively, we could rewrite the rule list such that the rules are mutually ex-

clusive. This is useful because it means that we can use each rule without reference to

the other rules, and also ignore their ordering. The only slight complication is that we

need negated literals (or internal disjunction) for those features that have more than

two values, such as ‘Length’:

·if Gills= yes then Class=�·
·if Gills= no ∧ Teeth=many then Class=⊕·
·if Gills= no ∧ Teeth= few ∧ Length= 4 then Class=�·
·if Gills= no ∧ Teeth= few ∧ Length 
= 4 then Class=⊕·

In this example we rely on the fact that this particular set of rules has a single literal

in each rule – in the general case we would need non-conjunctive rule bodies. For

example, consider the following rule list:

·if P ∧Q then Class=⊕·
·else if R then Class=�·

If we wanted to make these mutually exclusive the second rule would become

·if ¬(P ∧Q) ∧ R then Class=�·

or equivalently,

·if (¬P ∨ ¬Q) ∧ R then Class=�·



6.1 Learning ordered rule lists 163

Clearly, making rules mutually exclusive leads to less compact rules, which explains

why rule lists are a powerful and popular format.

Algorithm 6.1 specifies the separate-and-conquer rule learning strategy in more

detail. While there are still training examples left, the algorithm learns another rule

and removes all examples covered by the rule from the data set. This algorithm, which

is the basis for the majority of rule learning systems, is also called the covering algo-

rithm. The algorithm for learning a single rule is given in Algorithm 6.2. Similar to

decision trees, it uses the functions Homogeneous(D) and Label(D) to decide whether

further specialisation is needed and what class to put in the head of the rule, respec-

tively. It also employs a function BestLiteral(D,L) that selects the best literal to add to

the rule from the candidates in L given data D ; in our example above, this literal would

be selected on purity.

Many variations on these algorithms exist in the literature. The conditions in the

while-loops are often relaxed to other stopping criteria in order to deal with noisy data.

For example, in Algorithm 6.1 we may want to stop when no class has more than a

certain number of examples left, and include a default rule for the remaining examples.

Likewise, in Algorithm 6.2 we may want to stop if D drops below a certain size.

Rule lists have much in common with decision trees. We can therefore analyse the

construction of a rule list in the same way as we did in Figure 5.3 on p.137. This is shown

for the running example in Figure 6.5. For example, adding the first rule is depicted in

coverage space by splitting the ascending diagonal A into a horizontal segment B rep-

resenting the new rule and another diagonal segment C representing the new coverage

space. Adding the second rule causes segment C to split into vertical segment D (the

second rule) and diagonal segment E (the third coverage space). Finally, E is split into

a horizontal and a vertical segment (the third rule and the default rule, respectively).

The remaining segments B, D, F and G are now all horizontal or vertical, signalling that

the rules we learned are pure.

Algorithm 6.1: LearnRuleList(D) – learn an ordered list of rules.

Input : labelled training data D .

Output : rule list R.

1 R ←�;

2 while D 
= � do

3 r ←LearnRule(D) ; // LearnRule: see Algorithm 6.2

4 append r to the end of R;

5 D ←D \ {x ∈D|x is covered by r };

6 end

7 return R
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Figure 6.5. (left) A right-branching feature tree corresponding to a list of single-literal rules.

(right) The construction of this feature tree depicted in coverage space. The leaves of the tree

are either purely positive (in green) or purely negative (in red). Reordering these leaves on their

empirical probability results in the blue coverage curve. As the rule list separates the classes this

is a perfect coverage curve.

Rule lists for ranking and probability estimation

Turning a rule list into a ranker or probability estimator is as easy as it was for deci-

sion trees. Due to the covering algorithm we have access to the local class distributions

Algorithm 6.2: LearnRule(D) – learn a single rule.

Input : labelled training data D .

Output : rule r .

1 b ←true;

2 L ←set of available literals;

3 while not Homogeneous(D) do

4 l ←BestLiteral(D,L) ; // e.g., highest purity; see text

5 b ←b ∧ l ;

6 D ← {x ∈D|x is covered by b};

7 L← L \ {l ′ ∈ L|l ′ uses same feature as l };

8 end

9 C ←Label(D) ; // e.g., majority class

10 r ←·if b then Class=C ·;
11 return r
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associated with each rule. We can therefore base our scores on the empirical proba-

bilities. In the case of two classes we can rank the instances on decreasing empirical

probability of the positive class, giving rise to a coverage curve with one segment for

each rule. It is important to note that the ranking order of the rules is different from

their order in the rule list, just as the ranking order of the leaves of a tree is different

from their left-to-right order.

Example 6.2 (Rule lists as rankers). Consider the following two concepts:

(A) Length= 4 p2 n2,n4–5

(B) Beak= yes p1–5 n1–2,n5

Indicated on the right is each concept’s coverage over the whole training set. Us-

ing these concepts as rule bodies, we can construct the rule list AB:

·if Length= 4 then Class=�· [1+,3−]

·else if Beak= yes then Class=⊕· [4+,1−]

·else Class=�· [0+,1−]

The coverage curve of this rule list is given in Figure 6.6. The first segment of the

curve corresponds to all instances which are covered by B but not by A, which

is why we use the set-theoretical notation B \A. Notice that while this segment

corresponds to the second rule in the rule list, it comes first in the coverage curve

because it has the highest proportion of positives. The second coverage segment

corresponds to rule A, and the third coverage segment denoted ‘-’ corresponds

to the default rule. This segment comes last, not because it represents the last

rule, but because it happens to cover no positives.

We can also construct a rule list in the opposite order, BA:

·if Beak= yes then Class=⊕· [5+,3−]

·else if Length= 4 then Class=�· [0+,1−]

·else Class=�· [0+,1−]

The coverage curve of this rule list is also depicted in Figure 6.6. This time, the

first segment corresponds to the first segment in the rule list (B), and the second

and third segment are tied between rule A (after the instances covered by B are

taken away: A\B) and the default rule.

Which of these rule lists is a better ranker? We can see that AB makes fewer ranking

errors than BA (4.5 vs. 7.5), and thus has better AUC (0.82 vs. 0.70). We also see that,
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Figure 6.6. Coverage curves of two rule lists consisting of the rules from Example 6.2, in differ-

ent order (AB in blue and BA in violet). B \A corresponds to the coverage of rule B once the

coverage of rule A is taken away, and ‘-’ denotes the default rule. Neither curve dominates the

other, and thus each has operating conditions under which it is superior. The dotted segment

in red connecting the two curves corresponds to the overlap of the two rules A∧B, which is not

accessible by either rule list.

if accuracy is our performance criterion, AB would be optimal, achieving 0.80 accu-

racy (tpr = 0.80 and tnr = 0.80) where BA only manages 0.70 (tpr = 1 and tnr = 0.40).

However, if performance on the positives is 3 times as important as performance on

the negatives, then BA’s optimal operating point outperforms AB’s. Hence, each rule

list contains information not present in the other, and so neither is uniformly better.

The main reason for this is that the segment A∧B – the overlap of the two rules –

is not accessible by either rule list. In Figure 6.6 this is indicated by the dotted segment

connecting the segment B from rule list BA and the segment B\A from rule list AB. It

follows that this segment contains exactly those examples that are in B but not in B\A,

hence in A∧B. In order to access the rule overlap, we need to either combine the two

rule lists or go beyond the power of rule lists. This will be investigated further at the

end of the next section.

There are thus several connections between rule lists and decision trees. Further-

more, rule lists are similar to decision trees in that the empirical probabilities associated

with each rule yield convex ROC and coverage curves on the training data. We have ac-

cess to those empirical probabilities because of the coverage algorithm, which removes

all training instances covered by one rule before learning the next (Algorithm 6.1). As a
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result, rule lists produce probabilities that are well-calibrated on the training set. Some

rule learning algorithms in the literature reorder the rule list after all rules have been

constructed. In this case, convexity cannot be guaranteed unless we re-evaluate the

coverage of each rule in the reordered rule list.

6.2 Learning unordered rule sets

We next consider the alternative approach to rule learning, where rules are learned for

one class at a time. This means we can further simplify our search heuristic: rather than

minimising min(ṗ,1− ṗ), we can maximise ṗ, the empirical probability of the class

we are learning. This search heuristic is conventionally referred to by its ‘evaluation

measure name’ precision (see Table 2.3 on p.57).

Example 6.3 (Learning a rule set for one class). We continue the dolphin ex-

ample. Figure 6.7 shows that the first rule learned for the positive class is

·if Length= 3 then Class=⊕·

The two examples covered by this rule are removed, and a new rule is learned. We

now encounter a new situation, as none of the candidates is pure (Figure 6.8). We

thus start a second-level search, from which the following pure rule emerges:

·if Gills= no ∧ Length= 5 then Class=⊕·

To cover the remaining positive, we again need a rule with two conditions (Figure

6.9):

·if Gills= no ∧ Teeth=many then Class=⊕·
Notice that, even though these rules are overlapping, their overlap only covers

positive examples (since each of them is pure) and so there is no need to organise

them in an if-then-else list.

We now have a rule set for the positive class. With two classes this might be con-

sidered sufficient, as we can classify everything that isn’t covered by the positive rules

as negative. However, this might introduce a bias towards the negative class as all dif-

ficult cases we’re unsure about get automatically classified as negative. So let’s learn

some rules for the negative class. By the same procedure as in Example 6.3 we find

the following rules (you may want to check this): ·if Gills= yes then Class=�· first, fol-

lowed by ·if Length= 4 ∧ Teeth= few then Class=�·. The final rule set with rules for
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Figure 6.7. (top) The first rule is learned for the positive class. (bottom) Precision isometrics look

identical to impurity isometrics (Figure 6.2); however, the difference is that precision is lowest

on the x-axis and highest on the y-axis, while purity is lowest on the ascending diagonal and

highest on both the x-axis and the y-axis.

both classes is therefore

(R1) ·if Length= 3 then Class=⊕·
(R2) ·if Gills= no ∧ Length= 5 then Class=⊕·
(R3) ·if Gills= no ∧ Teeth=many then Class=⊕·
(R4) ·if Gills= yes then Class=�·
(R5) ·if Length= 4 ∧ Teeth= few then Class=�·

The algorithm for learning a rule set is given in Algorithm 6.3. The main differences
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Figure 6.8. (top) The second rule needs two literals: we use maximum precision to select both.

(bottom) The coverage space is smaller because the two positives covered by the first rule are

removed. The blue box on the left indicates an even smaller coverage space in which the search

for the second literal is carried out, after the condition Gills= no filters out four negatives. Inside

the blue box precision isometrics overlap with those in the outer box (this is not necessarily the

case with search heuristics other than precision).

with �LearnRuleList (Algorithm 6.1 on p.163) is that we now iterate over each class in

turn, and furthermore that only covered examples for the class that we are currently

learning are removed after a rule is found. The reason for this second change is that

rule sets are not executed in any particular order, and so covered negatives are not fil-

tered out by other rules. Algorithm 6.4 gives the algorithm for learning a single rule for

a particular class, which is very similar to �LearnRule (Algorithm 6.2 on p.164) except

(i) the best literal is now chosen with regard to the class to be learned, Ci ; and(ii) the

head of the rule is always labelled with Ci . An interesting variation that is sometimes
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Figure 6.9. (top) The third and final rule again needs two literals. (bottom) The first literal ex-

cludes four negatives, the second excludes the one remaining negative.

encountered in the literature is to initialise the set of available literals L to those occur-

ring in a given seed example belonging to the class to be learned: the advantage is that

this cuts back the search space, but a possible disadvantage is that the choice of seed

example may be sub-optimal.

One issue with using precision as search heuristic is that it tends to focus a bit too

much on finding pure rules, thereby occasionally missing near-pure rules that can be

specialised into a more general pure rule. Consider Figure 6.10 (top): precision favours

the rule ·if Length= 3 then Class=⊕·, even though the near-pure literal Gills= no leads

to the pure rule ·if Gills= no ∧ Teeth=many then Class=⊕·. A convenient way to deal

with this ‘myopia’ of precision is the Laplace correction, which ensures that [5+,1−]

is ‘corrected’ to [6+,2−] and thus considered to be of the same quality as [2+,0−] aka

[3+,1−] (Figure 6.10 (bottom)). Another way to reduce myopia further and break such

ties is to employ a beam search: rather than greedily going for the best candidate, we

maintain a fixed number of alternate candidates. In the example, a small beam size

would already allow us to find the more general rule:
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� the first beam would include the candidate bodies Length= 3 and Gills= no;

� we then add all possible specialisations of non-pure elements of the beam;

� of the remaining set – i.e., elements of the original beam plus all added speciali-

sations – we keep only the best few, preferring the ones that were already on the

beam in case of ties, as they are shorter;

� we stop when all beam elements are pure, and we select the best one.

Now that we have seen how to learn a rule set, we turn to the question of how to

employ a rule set model as a classifier. Suppose we encounter a new instance, say

Length= 3 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many. With the rule list on p.162 the

Algorithm 6.3: LearnRuleSet(D) – learn an unordered set of rules.

Input : labelled training data D .

Output : rule set R.

1 R ←�;

2 for every class Ci do

3 Di ←D ;

4 while Di contains examples of class Ci do

5 r ←LearnRuleForClass(Di ,Ci ) ; // LearnRuleForClass: see Algorithm 6.4

6 R ←R∪ {r };

7 Di ←Di \ {x ∈Ci |x is covered by r } ; // remove only positives

8 end

9 end

10 return R

Algorithm 6.4: LearnRuleForClass(D,Ci ) – learn a single rule for a given class.

Input : labelled training data D ; class Ci .

Output : rule r .

1 b ←true;

2 L ←set of available literals ; // can be initialised by seed example

3 while not Homogeneous(D) do

4 l ←BestLiteral(D,L,Ci ) ; // e.g. maximising precision on class Ci

5 b ←b ∧ l ;

6 D ← {x ∈D|x is covered by b};

7 L← L \ {l ′ ∈ L|l ′ uses same feature as l };

8 end

9 r ←·if b then Class=Ci ·;
10 return r
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Figure 6.10. (top) Using Laplace-corrected precision allows learning a better rule in the first

iteration. (bottom) Laplace correction adds one positive and one negative pseudo-count, which

means that the isometrics now rotate around (−1,−1) in coverage space, resulting in a preference

for more general rules.

first rule would fire and hence the instance is classified as negative. With the rule set

on p.168 we have that both R1 and R4 fire and make contradictory predictions. How

can we resolve this? In order to answer that question, it is easier to consider a more

general question first: how do we use a rule set for ranking and probability estimation?
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Rule sets for ranking and probability estimation

In the general case, for a rule set consisting of r rules there are up to 2r different ways in

which rules can overlap, and hence 2r instance space segments. Even though many of

these segments will be empty because rules are mutually exclusive, in general we will

have more instance space segments than rules. As a consequence, we have to estimate

the coverage of some of these segments.

Example 6.4 (Rule sets as rankers). Consider the following rule set (the first two

rules were also used in Example 6.2):

(A) ·if Length= 4 then Class=�· [1+,3−]

(B) ·if Beak= yes then Class=⊕· [5+,3−]

(C) ·if Length= 5 then Class=�· [2+,2−]

The figures on the right indicate coverage of each rule over the whole training

set. For instances covered by single rules we can use these coverage counts to

calculate probability estimates: e.g., an instance covered only by rule A would

receive probability p̂(A)= 1/4= 0.25, and similarly p̂(B)= 5/8= 0.63 and p̂(C)=
2/4= 0.50.

Clearly A and C are mutually exclusive, so the only overlaps we need to take

into account are AB and BC. A simple trick that is often applied is to average the

coverage of the rules involved: for example, the coverage of AB is estimated as

[3+,3−] yielding p̂(AB) = 3/6 = 0.50. Similarly, p̂(BC) = 3.5/6 = 0.58. The corre-

sponding ranking is thus B – BC – [AB, C] – A, resulting in the orange training set

coverage curve in Figure 6.11.

Let us now compare this rule set with the following rule list ABC:

·if Length= 4 then Class=�· [1+,3−]

·else if Beak= yes then Class=⊕· [4+,1−]

·else if Length= 5 then Class=�· [0+,1−]

The coverage curve of this rule list is indicated in Figure 6.11 as the blue line. We

see that the rule set outperforms the rule list, by virtue of being able to distinguish

between examples covered by B only and those covered by both B and C.

While in this example the rule set outperformed the rule list, this cannot be guar-

anteed in general. Due to the fact that the coverage counts of some segments have

to be estimated, a rule set coverage curve is not guaranteed to be convex even on the
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Figure 6.11. Coverage curves of the rule set in Example 6.4 (in orange) and the rule list ABC (in

blue). The rule set partitions the instance space in smaller segments, which in this case lead to

better ranking performance.

training set. For example, suppose that rule C also covers p1, then this won’t affect the

performance of the rule list (since p1 is already covered by B), but it would break the

tie between AB and C in favour of the latter and thus introduce a concavity.

If we want to turn such a ranker into a classifier, we have to find the best operating

point on the coverage curve. Assuming accuracy as our performance criterion, the

point (fpr = 0.2, tpr = 0.8) is optimal, which can be achieved by classifying instances

with p̂ > 0.5 as positive and the rest as negative. If such calibration of the decision

threshold is problematic (for example, in the case of more than two classes), we can

simply assign the class with the highest average coverage, making a random choice in

case of a tie.

A closer look at rule overlap

We have seen that rule lists always give convex training set coverage curves, but that

there is no globally optimal ordering of a given set of rules. The main reason is that

rule lists don’t give us access to the overlap of two rules A∧B: we either have access

to A = (A∧B)∨ (A∧¬B) if the rule order is AB, or B = (A∧B)∨ (¬A ∧B) if it is BA.

More generally, a rule list of r rules results in only r instance space segments (or r +1
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[0+, 0-] [1+, 2-]

[1+, 2-]

 ABC  AB-

[0+, 0-] [0+, 1-]

[0+, 1-]

 A-C  A--

[1+, 3-]

 AB  A-

[2+, 1-] [2+, 0-]
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 -BC  -B-

[0+, 1-] [0+, 0-]

[0+, 1-]

 --C  ---

[4+, 2-]

 -B  --

[5+, 5-]

 A  -

Figure 6.12. A rule tree constructed from the rules in Example 6.5. Nodes are labelled with their

coverage (dotted leaves have empty coverage), and branch labels indicate particular areas in the

instance space (e.g., A-C denotes A∧¬B ∧C). The blue nodes are the instance space segments

corresponding to the rule list ABC: the rule tree has better performance because it is able to split

them further.

in case we add a default rule). This means that we cannot take advantage of most of the

2r ways in which rules can overlap. Rule sets, on the other hand, can potentially give

access to such overlaps, but the need for the coverage counts of overlapping segments

to be estimated means that we have to sacrifice convexity. In order to understand this

further, we introduce in this section the concept of a rule tree: a complete feature tree

using the rules as features.

Example 6.5 (Rule tree). From the rules in Example 6.4 we can construct the

rule tree in Figure 6.12. The use of a tree rather than a list allows further split-

ting of the segments of the rule list. For example, the node labelled A is further

split into AB (A∧B) and A- (A∧¬B). As the latter is pure, we obtain a better

coverage curve (the red line in Figure 6.13).

As we see in this example, the rule tree coverage curve dominates the rule list cover-

age curve. This is true in general: there is no other information regarding rule overlap

than that contained in a rule tree, and any given rule list will usually convey only part

of that information. Conversely, we may wonder whether any operating point on the

rule tree curve is reachable by a particular rule list. The answer to this is negative, as a
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Figure 6.13. The blue line is the coverage curve of the rule list ABC in Example 6.4. This curve is

dominated by the red coverage curve, corresponding to the rule tree in Figure 6.12. The rule tree

also improves upon the rule set (orange curve in Figure 6.11), as it has access to exact coverage

counts in all segments and thus recognises that AB- goes before - -C.

simple counter-example shows (Figure 6.14).

In summary, of the three rule models considered, only rule trees can unlock the full

potential of rule overlap as they have the capacity to represent all 2r overlap areas of

r rules and give access to exact coverage counts for each area. Rule lists also convey

exact coverage counts but for fewer segments; rule sets distinguish the same segments

as rule trees but have to estimate coverage counts for the overlap areas. On the other

hand, rule trees are expensive as their size is exponential in the number of rules. An-

other disadvantage is that the coverage counts have to be obtained in a separate step,

after the rules have been learned. I have included rule trees here mainly for concep-

tual reasons: to gain a better understanding of the more common rule list and rule set

models.

6.3 Descriptive rule learning

As we have seen, the rule format lends itself naturally to predictive models, built from

rules with the target variable in the head. It is not hard to come up with ways to extend
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Figure 6.14. (top) A rule tree built on two rules X and Y. (bottom) The rule tree coverage

curve strictly dominates the convex hull of the two rule list curves. This means that there is an

operating point [2+,0−] that cannot be achieved by either rule list.

rule models to regression and clustering tasks, in a similar way to what we did for tree

models at the end of Chapter 5, but I will not elaborate on that here. Instead I will

show how the rule format can equally easily be used to build descriptive models. As

explained in Section 1.1, descriptive models can be learned in either a supervised or an

unsupervised way. As an example of the supervised setting we will discuss how to adapt

the given rule learning algorithms to subgroup discovery. For unsupervised learning of

descriptive rule models we will take a look at frequent item sets and association rule

discovery.
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Rule learning for subgroup discovery

When learning classification models it is natural to look for rules that identify pure

subsets of the training examples: i.e., sets of examples that are all of the same class

and that all satisfy the same conjunctive concept. However, as we have seen in Sec-

tion 3.3, sometimes we are less interested in predicting a class and more interested in

finding interesting patterns. We defined subgroups as mappings ĝ : X → {true, false} –

or alternatively, subsets of the instance space – that are learned from a set of labelled

examples (xi , l (xi )), where l : X →C is the true labelling function. A good subgroup is

one whose class distribution is significantly different from the overall population. This

is by definition true for pure subgroups, but these are not the only interesting ones. For

instance, one could argue that the complement of a subgroup is as interesting as the

subgroup itself: in our dolphin example, the conceptGills= yes, which covers four neg-

atives and no positives, could be considered as interesting as its complementGills= no,

which covers one negative and all positives. This means that we need to move away

from impurity-based evaluation measures.

Like concepts, subgroups can be plotted as points in coverage space, with the pos-

itives in the subgroup on the y-axis and the negatives on the x-axis. Any subgroup

plotted on the ascending diagonal has the same proportion of positives as the overall

population; these are the least interesting subgroups as they have the same statistics

as random samples. Subgroups above (below) the diagonal have a larger (smaller) pro-

portion of positives than the population. So one way to measure the quality of sub-

groups is to take one of the heuristics used for rule learning and measure the abso-

lute deviation from the default value on the diagonal. For example, the precision of

any subgroup on the diagonal is equal to the proportion of positives, so this leads to

|prec− pos| as one possible quality measure. For reasons already discussed it is of-

ten better to use Laplace-corrected precision precL, leading to the alternative measure

|precL −pos|. As can be seen in Figure 6.15 (left), the introduction of pseudo-counts

means that [5+,1−] is evaluated as [6+,2−] and is thus as interesting as the pure con-

cept [2+,0−] which is evaluated as [3+,1−].

However, this doesn’t quite put complementary subgroups on an equal footing, as

[5+,1−] is still considered to be of lower quality than [0+,4−]. In order to achieve this

complementarity we need an evaluation measure whose isometrics all run parallel to

the ascending diagonal. As it turns out, we have already seen such an evaluation mea-

sure in Section 2.1, where we called it average recall (see, e.g., Figure 2.4 on p.61). Notice

that subgroups on the diagonal always have average recall 0.5, regardless of the class

distribution. So, a good subgroup evaluation measure is |avg-rec−0.5|. Average recall

can be written as (1+ tpr− fpr)/2, and thus |avg-rec− 0.5| = |tpr− fpr|/2. It is some-

times desirable not to take the absolute value, so that the sign of the difference tells us

whether we are above or below the diagonal. A related subgroup evaluation measure is
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Figure 6.15. (left) Subgroups and their isometrics according to Laplace-corrected precision. The

solid, outermost isometrics indicate the best subgroups. (right) The ranking changes if we order

the subgroups on average recall. For example, [5+,1−] is now better than [3+,0−] and as good

as [0+,4−].

Subgroup Coverage precL Rank avg-rec Rank

Gills= yes [0+,4−] 0.17 1 0.10 1–2

Gills= no ∧ Teeth=many [3+,0−] 0.80 2 0.80 3

Gills= no [5+,1−] 0.75 3–9 0.90 1–2

Beak= no [0+,2−] 0.25 3–9 0.30 4–11

Gills= yes ∧ Beak= yes [0+,2−] 0.25 3–9 0.30 4–11

Length= 3 [2+,0−] 0.75 3–9 0.70 4–11

Length= 4 ∧ Gills= yes [0+,2−] 0.25 3–9 0.30 4–11

Length= 5 ∧ Gills= no [2+,0−] 0.75 3–9 0.70 4–11

Length= 5 ∧ Gills= yes [0+,2−] 0.25 3–9 0.30 4–11

Length= 4 [1+,3−] 0.33 10 0.30 4–11

Beak= yes [5+,3−] 0.60 11 0.70 4–11

Table 6.1. Detailed evaluation of the top subgroups. Using Laplace-corrected precision we can

evaluate the quality of a subgroup as |precL −pos|. Alternatively, we can use average recall to

define the quality of a subgroup as |avg-rec−0.5|. These two quality measures result in slightly

different rankings.

weighted relative accuracy, which can be written as pos ·neg(tpr− fpr).

As can be seen by comparing the two isometrics plots in Figure 6.15, using average

recall rather than Laplace-corrected precision has an effect on the ranking of some of

the subgroups. Detailed calculations are given in Table 6.1.
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Subgroup Coverage avg-rec Wgtd coverage W-avg-rec Rank

Gills= yes [0+,4−] 0.10 [0+,3−] 0.07 1–2

Gills= no [5+,1−] 0.90 [4.5+,0.5−] 0.93 1–2

Gills= no ∧Teeth=many [3+,0−] 0.80 [2.5+,0−] 0.78 3

Length= 5 ∧ Gills= yes [0+,2−] 0.30 [0+,2−] 0.21 4

Length= 3 [2+,0−] 0.70 [2+,0−] 0.72 5–6

Length= 5 ∧ Gills= no [2+,0−] 0.70 [2+,0−] 0.72 5–6

Beak= no [0+,2−] 0.30 [0+,1.5−] 0.29 7–9

Gills= yes ∧ Beak= yes [0+,2−] 0.30 [0+,1.5−] 0.29 7–9

Beak= yes [5+,3−] 0.70 [4.5+,2−] 0.71 7–9

Length= 4 [1+,3−] 0.30 [0.5+,1.5−] 0.34 10

Length= 4 ∧ Gills= yes [0+,2−] 0.30 [0+,1−] 0.36 11

Table 6.2. The ‘Wgtd coverage’ column shows how the weighted coverage of the subgroups is af-

fected if the weights of the examples covered byLength= 4 are reduced to 1/2. ‘W-avg-rec’ shows

how how the avg-rec numbers as calculated in Table 6.1 are affected by the weighting, leading to

further differentiation between subgroups that were previously considered equivalent.

Example 6.6 (Comparing Laplace-corrected precision and average recall).

Table 6.1 ranks ten subgroups in the dolphin example in terms of Laplace-

corrected precision and average recall. One difference is that Gills= no

∧ Teeth=many with coverage [3+,0−] is better than Gills= no with cover-

age [5+,1−] in terms of Laplace-corrected precision, but worse in terms of

average recall, as the latter ranks it equally with its complement Gills= yes.

The second difference between classification rule learning and subgroup discovery

is that in the latter case we are naturally interested in overlapping rules, whereas the

standard covering algorithm doesn’t encourage this as examples already covered are

removed from the training set. One way of dealing with this is by assigning weights to

examples that are decreased every time an example is covered by a newly learned rule.

A scheme that works well in practice is to initialise the example weights to 1 and halve

them every time a new rule covers the example. Search heuristics are then evaluated

in terms of the cumulative weight of covered examples, rather than just their number.

Example 6.7 (The effect of weighted covering). Suppose the first subgroup
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Figure 6.16. Visualisation of the effect of weighted covering. If the first subgroup found is

Length= 4, then this halves the weight of one positive and three negatives, shrinking the cov-

erage space to the blue box. The arrows indicate how this affects the weighted coverage of other

subgroups, depending on which of the reduced-weight examples they cover.

found is Length= 4, reducing the weight of the one positive and three negatives

covered by it to 1/2. Detailed calculations of how this affects the weighted

coverage of subgroups are given in Table 6.2. We can see how the coverage

space shrinks to the blue box in Figure 6.16. It also affects the weighted coverage

of the subgroups overlapping with Length= 4, as indicated by the arrows.

Some subgroups end up closer to the diagonal and hence lose importance:

for instance, Length= 4 itself, which moves from [3+,1−] to [1.5+,0.5−]. Oth-

ers move away from the diagonal and hence gain importance: for example

Length= 5 ∧ Gills= yes at [0+,2−].

The weighted covering algorithm is given in Algorithm 6.5. Notice that this algo-

rithm can be applied to discover subgroups over k > 2 classes, as long as the evaluation

measure used to learn single rules can handle more than two classes. This is clearly the

case for average recall used in our examples. Other possibilities include measures de-

rived from the Chi-squared test and mutual information-based measures.
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Association rule mining

I will now introduce a new kind of rule that can be learned in a wholly unsupervised

manner and is prominent in data mining applications. Suppose we observed eight

customers who each bought one or more of apples, beer, crisps and nappies:

Transaction Items

1 nappies

2 beer, crisps

3 apples, nappies

4 beer, crisps, nappies

5 apples

6 apples, beer, crisps, nappies

7 apples, crisps

8 crisps

Each transaction in this table involves a set of items; conversely, for each item we can

list the transactions in which it was involved: transactions 1, 3, 4 and 6 for nappies,

transactions 3, 5, 6 and 7 for apples, and so on. We can also do this for sets of items:

e.g., beer and crisps were bought together in transactions 2, 4 and 6; we say that item

set {beer,crisps} covers transaction set {2,4,6}. There are 16 of such item sets (includ-

ing the empty set, which covers all transactions); using the subset relation between

transaction sets as partial order, they form a lattice (Figure 6.17).

Let us call the number of transactions covered by an item set I its support, denoted

Supp(I ) (sometimes called frequency). We are interested in frequent item sets, which

exceed a given support threshold f0. Support is monotonic: when moving down a path

in the item set lattice it can never increase. This means that the set of frequent item

Algorithm 6.5: WeightedCovering(D) – learn overlapping rules by weighting exam-

ples.

Input : labelled training data D with instance weights initialised to 1.

Output : rule list R.

1 R ←�;

2 while some examples in D have weight 1 do

3 r ←LearnRule(D) ; // LearnRule: see Algorithm 6.2

4 append r to the end of R;

5 decrease the weights of examples covered by r ;

6 end

7 return R
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{Nappies, Beer, Crisps, Apples}

{Beer, Crisps}

{Nappies, Beer, Crisps} {Beer, Crisps, Apples}

{Nappies, Apples}

{Nappies, Crisps, Apples} {Nappies, Beer, Apples}

{Crisps, Apples}

{Nappies}

{Nappies, Crisps} {Nappies, Beer}

{Apples}

{Beer, Apples}

{}

{Beer}{Crisps}

Figure 6.17. An item set lattice. Item sets in dotted ovals cover a single transaction; in dashed

ovals, two transactions; in triangles, three transactions; and in polygons with n sides, n transac-

tions. The maximal item sets with support 3 or more are indicated in green.

sets is convex and is fully determined by its lower boundary of largest item sets: in

the example these maximal1 frequent item sets are, for f0 = 3: {apples}, {beer,crisps}

and {nappies}. So, at least three transactions involved apples; at least three involved

nappies; at least three involved both beer and crisps; and any other combination of

items was bought less often.

Because of the monotonicity property of item set support, frequent item sets can be

found by a simple enumerative breadth-first or level-wise search algorithm (Algorithm

6.6). The algorithm maintains a priority queue, initially holding only the empty item

set which covers all transactions. Taking the next candidate item set I off the priority

queue, it generates all its possible extensions (supersets containing one more item,

the downward neighbours in the item set lattice), and adds them to the priority queue

if they exceed the support threshold (at the back, to achieve the desired breadth-first

behaviour). If at least one of I ’s extensions is frequent, I is not maximal and can be

discarded; otherwise I is added to the set of maximal frequent item sets found.

We can speed up calculations by restricting attention to closed item sets. These are

completely analogous to the �closed concepts discussed at the end of Section 4.2: a

closed item set contains all items that are involved in every transaction it covers. For

example, {beer,crisps} covers transactions 2, 4 and 6; the only items involved in each of

those transactions are beer and crisps, and so the item set is closed. However, {beer} is

not closed, as it covers the same transactions, hence its closure is {beer,crisps}. If two

item sets that are connected in the lattice have the same coverage, the smaller item set

1‘Maximal’ here means that no superset is frequent.
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cannot be closed. The lattice of closed item sets is shown in Figure 6.18. Notice that

maximal frequent item sets are necessarily closed (as extending them will decrease

their coverage below the support threshold, otherwise they aren’t maximal), and are

thus unaffected by this restriction; but it does allow a more efficient search.

So what is the point of these frequent item sets? The answer is that we will use them

to build association rules, which are rules of the form ·if B then H · where both body B

and head H are item sets that frequently appear in transactions together. Pick any

edge in Figure 6.17, say the edge between {beer} and {nappies,beer}. We know that the

support of the former is 3 and of the latter, 2: that is, three transactions involve beer and

two of those involve nappies as well. We say that the confidence of the association rule

·if beer then nappies· is 2/3. Likewise, the edge between {nappies} and {nappies,beer}

demonstrates that the confidence of the rule ·if nappies then beer· is 2/4. There are

also rules with confidence 1, such as ·if beer then crisps·; and rules with empty bodies,

such as ·if true then crisps·, which has confidence 5/8 (i.e., five out of eight transactions

involve crisps).

But we only want to construct association rules that involve frequent items. The

rule ·if beer ∧ apples then crisps· has confidence 1, but there is only one transaction

involving all three and so this rule is not strongly supported by the data. So we first use

Algorithm 6.6 to mine for frequent item sets; we then select bodies B and heads H from

Algorithm 6.6: FrequentItems(D, f0) – find all maximal item sets exceeding a given

support threshold.

Input : data D ⊆X ; support threshold f0.

Output : set of maximal frequent item sets M .

1 M ←�;

2 initialise priority queue Q to contain the empty item set;

3 while Q is not empty do

4 I ← next item set deleted from front of Q;

5 max← true ; // flag to indicate whether I is maximal

6 for each possible extension I ′ of I do

7 if Supp(I ′)≥ f0 then

8 max← false ; // frequent extension found, so I is not maximal

9 add I ′ to back of Q;

10 end

11 end

12 if max= true then M ←M ∪ {I };

13 end

14 return M
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{}

{Apples} {Nappies} {Crisps}

{Nappies, Apples} {Crisps, Apples}

{Nappies, Beer, Crisps}

{Beer, Crisps}

{Nappies, Beer, Crisps, Apples}

Figure 6.18. Closed item set lattice corresponding to the item sets in Figure 6.17. This lattice has

the property that no two adjacent item sets have the same coverage.

the frequent sets m, discarding rules whose confidence is below a given confidence

threshold. Algorithm 6.7 gives the basic algorithm. Notice that we are free to discard

some of the items in the maximal frequent sets (i.e., H ∪B may be smaller than m),

because any subset of a frequent item set is frequent as well.

A run of the algorithm with support threshold 3 and confidence threshold 0.6 gives

the following association rules:

·if beer then crisps· support 3, confidence 3/3

·if crisps then beer· support 3, confidence 3/5

Algorithm 6.7: AssociationRules(D, f0,c0) – find all association rules exceeding

given support and confidence thresholds.

Input : data D ⊆X ; support threshold f0; confidence threshold c0.

Output : set of association rules R.

1 R ←�;

2 M ← FrequentItems(D, f0) ; // FrequentItems: see Algorithm 6.6

3 for each m ∈M do

4 for each H ⊆m and B ⊆m such that H ∩B =� do

5 if Supp(B ∪H)/Supp(B)≥ c0 then R ←R∪ {·if B then H ·}
6 end

7 end

8 return R
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·if true then crisps· support 5, confidence 5/8

Association rule mining often includes a post-processing stage in which superfluous

rules are filtered out, e.g., special cases which don’t have higher confidence than the

general case. One quantity that is often used in post-processing is lift, defined as

Lift(·if B then H ·)= n ·Supp(B ∪H)

Supp(B) ·Supp(H)

where n is the number of transactions. For example, for the the first two association

rules above we would have lifts of 8·3
3·5 = 1.6, as Lift(·if B then H ·) = Lift(·if H then B ·).

For the third rule we have Lift(·if true then crisps·) = 8·5
8·5 = 1. This holds for any rule

with B =�, as

Lift(·if � then H ·)= n ·Supp(�∪H)

Supp(�) ·Supp(H)
= n ·Supp(H)

n ·Supp(H)
= 1

More generally, a lift of 1 means that Supp(B∪H) is entirely determined by the marginal

frequencies Supp(B) and Supp(H) and is not the result of any meaningful interaction

between B and H . Only association rules with lift larger than 1 are of interest.

Quantities like confidence and lift can also be understood from a probabilistic con-

text. Let Supp(I )/n be an estimate of the probability p(I ) that a transaction involves all

items in I , then confidence estimates the conditional probability p(H |B). In a classifi-

cation context, where H denotes the actual class and B the predicted class, this would

be called precision (see Table 2.3 on p.57), and in this chapter we have already used it

as a search heuristic in rule learning. Lift then measures whether the events ‘a random

transaction involves all items in B ’ and ‘a random transaction involves all items in H ’

are statistically independent.

It is worth noting that the heads of association rules can contain multiple items.

For instance, suppose we are interested in the rule ·if nappies then beer·, which has

support 2 and confidence 2/4. However, {nappies,beer} is not a closed item set: its

closure is {nappies,beer,crisps}. So ·if nappies then beer· is actually a special case of

·if nappies then beer ∧ crisps·, which has the same support and confidence but involves

only closed item sets.

We can also apply frequent item set analysis to our dolphin data set, if we treat each

literal Feature=Value as an item, keeping in mind that different values of the same

feature are mutually exclusive. Item sets then correspond to concepts, transactions

to instances, and the extension of a concept is exactly the set of transactions covered

by an item set. The item set lattice is therefore the same as what we previously called

the hypothesis space, with the proviso that we are not considering negative examples

in this scenario (Figure 6.19). The reduction to closed concepts/item sets is shown in

Figure 6.20. We can see that, for instance, the rule

·if Gills= no ∧ Beak= yes then Teeth=many·
has support 3 and confidence 3/5 (but you may want to check whether it has any lift!).
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6.4 First-order rule learning

In Section 4.3 we briefly touched upon using first-order logic as a concept language.

The main difference is that literals are no longer simple feature-value pairs but can

have a much richer structure. All rule learning approaches covered in this chapter have

been upgraded in the literature to learn rules expressed in first-order logic. In this

section we will take a brief look at how this might work.

Many approaches to learning in first-order logic are based on the logic program-

ming language Prolog, and learning first-order rules is often called inductive logic pro-

gramming (ILP). Logically speaking, Prolog rules are Horn clauses with a single literal

in the head – we encountered Horn clauses before in Section 4.3. Prolog notation is

slightly different from first-order logic notation. So, instead of

∀x : BodyPart(x,PairOf(Gill))→ Fish(x)

we write

fish(X):-bodyPart(X,pairOf(gills)).

The main differences are:

� rules are written back-to-front in ‘head-if-body’ fashion;

� variables start with a capital letter; constants, predicates and function symbols

(called functors in Prolog) start with lower-case;

� variables are implicitly universally quantified.

With regard to the third point, it is worth pointing out the difference between variables

occurring in both head and body, and variables occurring in the body only. Consider

the following Prolog clause:

someAnimal(X):-bodyPart(X,pairOf(Y)).

There are two equivalent ways of writing this rule in first-order logic:

∀x : ∀y : BodyPart(x,PairOf(y))→ SomeAnimal(x)

∀x :
(∃y : BodyPart(x,PairOf(y))

)→ SomeAnimal(x)

The first logical statement reads ‘for all x and y , if x has a pair of ys as body parts then x

is some kind of animal’ whereas the second states ‘for all x, if there exists a y such that

x has a pair of ys as body parts then x is some kind of animal’. Crucially, in the second

form the scope of the existential quantifier is the if-part of the rule, whereas universal

quantifiers always range over the whole clause. Variables occurring in the body but

not in the head of Prolog clauses are called local variables; they are the source of much

additional complexity in learning first-order rules over propositional rules.
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If we want to learn an ordered list of Prolog clauses, we can reuse �LearnRuleList

(Algorithm 6.1 on p.163) in its entirety and most of�LearnRule (Algorithm 6.2 on p.164).

What needs adjusting is the choice of literal to be added to the clause. Possible literals

can be enumerated by listing the predicates, functors and constants that can be used

to build a new literal. For example, if we have a binary predicate bodyPart, a unary

functor pairOf and constants gill and tail, then we can build a variety of literals

such as

bodyPart(X,Y)

bodyPart(X,gill)

bodyPart(X,tail)

bodyPart(X,pairOf(Y))

bodyPart(X,pairOf(gill))

bodyPart(X,pairOf(tail))

bodyPart(X,pairOf(pairOf(Y)))

bodyPart(X,pairOf(pairOf(gill)))

bodyPart(X,pairOf(pairOf(tail)))

and so on. Notice that the presence of functors means that our hypothesis language

becomes infinite! Also, I have only listed literals that somehow ‘made sense’: there

are many less sensible possibilities, such as bodyPart(pairOf(gill),tail) or

bodyPart(X,X), to name but a few. Although Prolog is an untyped language, many

of these unwanted literals can be excluded by adding type information (in logic pro-

gramming and ILP often done through ‘mode declarations’ which also specify particu-

lar input–output patterns of a predicate’s arguments).

It is clear from these examples that there can be relationships between literals, and

therefore between the clauses that contain them. For example, consider the following

three clauses:

fish(X):-bodyPart(X,Y).

fish(X):-bodyPart(X,pairOf(Z)).

fish(X):-bodyPart(X,pairOf(gill)).

The first clause defines everything with some body part to be a fish. The second clause

specialises this to everything with a pair of unspecified body parts. The third spe-

cialises this to everything with a pair of gills. A reasonable search strategy would be

to try hypotheses in this order, and only move on to a specialised version if the more

general clause is ruled out by negative examples. This is what in fact happens in top–

down ILP systems. A simple trick is to represent substitution of terms for variables

explicitly by adding equality literals, so the above sequence of clauses becomes
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fish(X):-bodyPart(X,Y).

fish(X):-bodyPart(X,Y),Y=pairOf(Z).

fish(X):-bodyPart(X,Y),Y=pairOf(Z),Z=gill.

As an alternative for enumerating the literals to be considered for inclusion in a

clause body we can derive them from the data in a bottom–up fashion. Suppose we

have the following information about a dolphin:

bodyPart(dolphin42,tail).

bodyPart(dolphin42,pairOf(gills)).

bodyPart(dolphin42,pairOf(eyes)).

and this about a tunafish:

bodyPart(tuna123,pairOf(gills)).

By forming the LGG of each of the literals in the first example with the literal from the

second example we obtain each of the generalised literals considered earlier.

This short discussion of rule learning in first-order logic has left out many impor-

tant details and may therefore give an overly simplified view of the problem. While the

problem of learning Prolog clauses can be stated quite succinctly, naive approaches

are computationally intractable and ‘the devil is in the detail’. The basic approaches

sketched here can be extended to include background knowledge, which then affects

the generality ordering of the hypothesis space. For example, if our background knowl-

edge includes the clause

bodyPart(X,scales):-bodyPart(X,pairOf(gill)).

then the first of the following two hypotheses is more general than the second:

fish(X):-bodyPart(X,scales).

fish(X):-bodyPart(X,pairOf(gill)).

However, this cannot be determined purely by syntactic means and requires logical

inference.

Another intriguing possibility offered by first-order logic is the possibility of learn-

ing recursive clauses. For instance, part of our hypothesis could be the following clause:

fish(X):-relatedSpecies(X,Y),fish(Y).

This blurs the distinction between background predicates that can be used in the body
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of hypotheses and target predicates that are to be learned, and introduces computa-

tional challenges such as non-termination. However, this doesn’t mean that it cannot

be done. Related techniques can be used to learn multiple, interrelated predicates at

once, and to invent new background predicates that are completely unobserved.

6.5 Rule models: Summary and further reading

In a decision tree, a branch from root to a leaf can be interpreted as a conjunctive clas-

sification rule. Rule models generalise this by being more flexible about the way in

which several rules are combined into a model. The typical rule learning algorithm

is the covering algorithm, which iteratively learns one rule and then removes the ex-

amples covered by that rule. This approach was pioneered by Michalski (1975) with his

AQ system, which became highly developed over three decades (Wojtusiak et al., 2006).

General overviews are provided by Fürnkranz (1999, 2010) and Fürnkranz, Gamberger

and Lavrač (2012). Coverage plots were first used by Fürnkranz and Flach (2005) to

achieve a better understanding of rule learning algorithms and demonstrate the close

relationship (and in many cases, equivalence) of commonly used search heuristics.

� Rules can overlap and thus we need a strategy to resolve potential conflicts be-

tween rules. One such strategy is to combine the rules in an ordered rule list,

which was the subject of Section 6.1. Rivest (1987) compares this approach with

decision trees, calling the rule-based model a decision list (I prefer the term ‘rule

list’ as it doesn’t carry a suggestion that the elements of the list are single lit-

erals). Well-known rule list learners include CN2 (Clark and Niblett, 1989) and

Ripper (Cohen, 1995), the latter being particularly effective at avoiding overfit-

ting through incremental reduced-error pruning (Fürnkranz and Widmer, 1994).

Also notable is the Opus system (Webb, 1995), which distinguishes itself by per-

forming a complete search through the space of all possible rules.

� In Section 6.2 we looked at unordered rule sets as an alternative to ordered rule

lists. The covering algorithm is adapted to learn rules for a single class at a time,

and to remove only covered examples of the class currently under consideration.

CN2 can be run in unordered mode to learn rule sets (Clark and Boswell, 1991).

Conceptually, both rule lists and rule sets are special cases of rule trees, which

distinguish all possible Boolean combinations of a given set of rules. This allows

us to see that rule lists lead to fewer instance space segments than rule sets (over

the set of rules); on the other hand, rule list coverage curves can be made convex

on the training set, whereas rule sets need to estimate the class distribution in

the regions where rules overlap.

� Rule models can be used for descriptive tasks, and in Section 6.3 we considered
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rule learning for subgroup discovery. The weighted covering algorithm was in-

troduced as an adaption of CN2 by Lavrač, Kavšek, Flach and Todorovski (2004);

Abudawood and Flach (2009) generalise this to more than two classes. Algorithm

6.7 learns association rules and is adapted from the well-known Apriori algorithm

due to Agrawal, Mannila, Srikant, Toivonen and Verkamo (1996). There is a very

wide choice of alternative algorithms, surveyed by Han et al. (2007). Association

rules can also be used to build effective classifiers (Liu et al., 1998; Li et al., 2001).

� The topic of first-order rule learning briefly considered in Section 6.4 has been

studied for the last 40 years and has a very rich history. De Raedt (2008) pro-

vides an excellent recent introduction, and an overview of recent advances and

open problems is provided by Muggleton et al. (2012). Flach (1994) gives an in-

troduction to Prolog and also provides high-level implementations of some of

the key techniques in inductive logic programming. The FOIL system by Quinlan

(1990) implements a top–down learning algorithm similar to the one discussed

here. The bottom–up technique was pioneered in the Golem system (Muggle-

ton and Feng, 1990) and further refined in Progol (Muggleton, 1995) and in Aleph

(Srinivasan, 2007), two of the most widely used ILP systems. First-order rules

can also be learned in an unsupervised fashion, for example by Tertius which

learns first-order clauses (not necessarily Horn) (Flach and Lachiche, 2001) and

Warmr which learns first-order association rules (King et al., 2001). Higher-order

logic provides more powerful data types that can be highly beneficial in learning

(Lloyd, 2003). A more recent development is the combination of probabilistic

modelling with first-order logic, leading to the area of statistical relational learn-

ing (De Raedt and Kersting, 2010).

�



CHAPTER 7

Linear models

A
FTER DEALING WITH logical models in the preceding chapters we now move on to a

quite different kind of model. The models in this chapter and the next are defined in

terms of the geometry of instance space. Geometric models most often assume that

instances are described by d real-valued features, and thus X = Rd . For example, we

could describe objects by their position on a map in terms of longitude and latitude

(d = 2), or in the real world by longitude, latitude and altitude (d = 3). While most real-

valued features are not intrinsically geometric – think of a person’s age or an object’s

temperature – we can still imagine them being plotted in a d-dimensional Cartesian

coordinate system. We can then use geometric concepts such as lines and planes to

impose structure on this space, for instance in order to build a classification model. Al-

ternatively, we can use the geometric notion of distance to represent similarity, on the

basis that if two points are close together they have similar feature values and thus can

be expected to behave similarly with respect to the property of interest. Such distance-

based models are the subject of the next chapter. In this chapter we will look at models

that can be understood in terms of lines and planes, commonly called linear models.

Linearity plays a fundamental role in mathematics and related disciplines, and the

mathematics of linear models is well-understood (see Background 7.1 for the most im-

portant concepts). In machine learning, linear models are of particular interest be-

cause of their simplicity (remember our rule of thumb ‘everything should be made as

194
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If x1 and x2 are two scalars or vectors of the same dimension and α and β are arbitrary

scalars, then αx1+βx2 is called a linear combination of x1 and x2. If f is a linear function

of x, then

f (αx1+βx2)=α f (x1)+β f (x2)

In words, the function value of a linear combination of some inputs is a linear combina-

tion of their function values. As a special case, if β= 1−α we are taking a weighted average

of x1 and x2, and the linearity of f then means that the function value of the weighted av-

erage is the weighted average of the function values.

Linear functions take particular forms, depending on the domain and codomain of f . If x

and f (x) are scalars, it follows that f is of the form f (x)= a+bx for some constants a and

b; a is called the intercept and b the slope. If x= (x1, . . ., xd ) is a vector and f (x) is a scalar,

then f is of the form

f (x)= a+b1x1+ . . .+bd xd = a+b ·x (7.1)

with b = (b1, . . .,bd ). The equation f (x) = 0 defines a plane in Rd perpendicular to the

normal vector b.

The most general case is where f (x) is a d ′-dimensional vector, in which case f is of the

form f (x)=Mx+t, where M is a d ′-by-d matrix representing a linear transformation such

as a rotation or a scaling, and t is a d ′-vector representing a translation. In this case f is

called an affine transformation (the difference between linear and affine transformations

is that the former maps the origin to itself; notice that a linear function of the form of

Equation 7.1 is a linear transformation only if the intercept is 0).

In all these forms we can avoid representing the intercept a or the translation t separately

by using homogeneous coordinates. For instance, by writing b◦ = (a,b1, . . .,bd ) and x◦ =
(1, x1, . . ., xd ) in Equation 7.1 we have f (x)= b◦ ·x◦ (see also Background 1.2 on p.24).

Examples of non-linear functions are the polynomials in x of degree p > 1: g (x) =
a0+a1x+a2x2+. . .+ap xp =∑p

i=0 ai xi . Other non-linear functions can be approximated

by a polynomial through their Taylor expansion. The linear approximation of a function

g at x0 is g (x0)+ g ′(x0)(x − x0), where g ′(x) is the derivative of x. A piecewise linear ap-

proximation is obtained by combining several linear approximations at different points

x0.

Background 7.1. Linear models.

simple as possible, but not simpler’ that we introduced on p.30). Here are a couple of

manifestations of this simplicity.

� Linear models are parametric, meaning that they have a fixed form with a small

number of numeric parameters that need to be learned from data. This is
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different from tree or rule models, where the structure of the model (e.g., which

features to use in the tree, and where) is not fixed in advance.

� Linear models are stable, which is to say that small variations in the training data

have only limited impact on the learned model. Tree models tend to vary more

with the training data, as the choice of a different split at the root of the tree

typically means that the rest of the tree is different as well.

� Linear models are less likely to overfit the training data than some other models,

largely because they have relatively few parameters. The flipside of this is that

they sometimes lead to underfitting: e.g., imagine you are learning where the

border runs between two countries from labelled samples, then a linear model

is unlikely to give a good approximation.

The last two points can be summarised by saying that linear models have low variance

but high bias. Such models are often preferable when you have limited data and want

to avoid overfitting. High variance–low bias models such as decision trees are prefer-

able if data is abundant but underfitting is a concern. It is usually a good idea to start

with simple, high-bias models such as linear models and only move on to more elabo-

rate models if the simpler ones appear to be underfitting.

Linear models exist for all predictive tasks, including classification, probability es-

timation and regression. Linear regression, in particular, is a well-studied problem that

can be solved by the least-squares method, which is the topic of the next section. We

will look at a number of other linear models in this chapter, including least-squares

classification (also in Section 7.1), the perceptron in Section 7.2, and the support vec-

tor machine in Section 7.3. We will also find out how these models can be turned into

probability estimators in Section 7.4. Finally, Section 7.5 briefly discusses how each of

these methods could learn non-linear models by means of so-called kernel functions.

7.1 The least-squares method

We start by introducing a method that can be used to learn linear models for classifica-

tion and regression. Recall that the regression problem is to learn a function estimator

f̂ : X →R from examples (xi , f (xi )), where in this chapter we assume X =Rd . The dif-

ferences between the actual and estimated function values on the training examples

are called residuals εi = f (xi )− f̂ (xi ). The least-squares method, introduced by Carl

Friedrich Gauss in the late eighteenth century, consists in finding f̂ such that
∑n

i=1 ε
2
i is

minimised. The following example illustrates the method in the simple case of a single

feature, which is called univariate regression.
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Figure 7.1. The red solid line indicates the result of applying linear regression to 10 measure-

ments of body weight (on the y-axis, in kilograms) against body height (on the x-axis, in cen-

timetres). The orange dotted lines indicate the average height h = 181 and the average weight

w = 74.5; the regression coefficient b̂ = 0.78. The measurements were simulated by adding nor-

mally distributed noise with mean 0 and variance 5 to the true model indicated by the blue

dashed line (b = 0.83).

Example 7.1 (Univariate linear regression). Suppose we want to investigate the

relationship between people’s height and weight. We collect n height and weight

measurements (hi , wi ),1 ≤ i ≤ n. Univariate linear regression assumes a lin-

ear equation w = a + bh, with parameters a and b chosen such that the sum

of squared residuals
∑n

i=1(wi − (a+bhi ))2 is minimised. In order to find the pa-

rameters we take partial derivatives of this expression, set the partial derivatives

to 0 and solve for a and b:

∂

∂a

n∑
i=1

(wi − (a+bhi ))2 =−2
n∑

i=1
(wi − (a+bhi ))= 0 ⇒ â =w − b̂h

∂

∂b

n∑
i=1

(wi − (a+bhi ))2 =−2
n∑

i=1
(wi − (a+bhi ))hi = 0

⇒ b̂ =
∑n

i=1(hi −h)(wi −w)∑n
i=1(hi −h)2

So the solution found by linear regression is w = â+ b̂h =w+ b̂(h−h); see Figure

7.1 for an example.
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It is worthwhile to note that the expression for the regression coefficient or slope b̂

derived in this example has n times the covariance between h and w in the enumerator

and n times the variance of h in the denominator. This is true in general: for a feature

x and a target variable y , the regression coefficient is

b̂ = n
σx y

nσxx
= σx y

σxx

(Here I use σxx as an alternative notation for σ2
x , the variance of variable x.) This can

be understood by noting that the covariance is measured in units of x times units of

y (e.g., metres times kilograms in Example 7.1) and the variance in units of x squared

(e.g., metres squared), so their quotient is measured in units of y per unit of x (e.g.,

kilograms per metre).

We can notice a few more useful things. The intercept â is such that the regression

line goes through (x, y). Adding a constant to all x-values (a translation) will affect only

the intercept but not the regression coefficient (since it is defined in terms of deviations

from the mean, which are unaffected by a translation). So we could zero-centre the

x-values by subtracting x, in which case the intercept is equal to y . We could even

subtract y from all y-values to achieve a zero intercept, without changing the problem

in an essential way.

Furthermore, suppose we replace xi with x ′i = xi /σxx and likewise x with x ′ =
x/σxx , then we have that b̂ = 1

n

∑n
i=1(x ′i − x ′)(yi − y) = σx′y . In other words, if we nor-

malise x by dividing all its values by x’s variance, we can take the covariance between

the normalised feature and the target variable as regression coefficient. In other words,

univariate linear regression can be understood as consisting of two steps:

1. normalisation of the feature by dividing its values by the feature’s variance;

2. calculating the covariance of the target variable and the normalised feature.

We will see below how these two steps change when dealing with more than one fea-

ture.

Another important point to note is that the sum of the residuals of the least-squares

solution is zero:
n∑

i=1
(yi − (â+ b̂xi ))= n(y − â− b̂x)= 0

The result follows because â = y − b̂x, as derived in Example 7.1. While this property

is intuitively appealing, it is worth keeping in mind that it also makes linear regres-

sion susceptible to outliers: points that are far removed from the regression line, often

because of measurement errors.
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Figure 7.2. The effect of an outlier in univariate regression. One of the blue points got moved up

10 units to the green point, changing the red regression line to the green line.

Example 7.2 (The effect of outliers). Suppose that, as the result of a transcrip-

tion error, one of the weight values in Figure 7.1 is increased by 10 kg. Figure 7.2

shows that this has a considerable effect on the least-squares regression line.

Despite this sensitivity to outliers, the least-squares method usually works surpris-

ingly well for such a simple method. How can it be justified? One way to look at this

is to assume that the true function f is indeed linear, but that the observed y-values

are contaminated with random noise. That is, our examples are (xi , f (xi )+ εi ) rather

than (xi , f (xi )), and we assume that f (x)= ax+b for some a and b. If we knew a and b

we could work out exactly what the residuals are, and if we knew σ2 we could calculate

the probability of observing that set of residuals. Since we don’t know a and b we have

to estimate them, and the estimate we want is the value of a and b that maximises the

probability of the residuals. We will see in Chapter 9 that this so-called �maximum-

likelihood estimate is exactly the least-squares solution.

Variants of the least-squares method exist. Here we discussed ordinary least squares,

which assumes that only the y-values are contaminated with random noise. Total least

squares generalises this to the situation that both x- and y-values are noisy, but this

does not necessarily have a unique solution.
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X usually denotes an n-by-d data matrix containing n instances in rows described by d

features or variables in columns. Xr · denotes the r -th row of X, X·c denotes the c-th col-

umn, and Xr c denotes the entry in the r -th row and c-th column. We also use i and

j to range over rows and columns, respectively. The j -th column mean is defined as

μ j = 1
n
∑n

i=1 Xi j ; μT is a row vector containing all column means. If 1 is an n-vector con-

taining only ones, then 1μT is an n-by-d matrix whose rows are μT; hence X′ = X−1μT

has mean zero in each column and is referred to as the zero-centred data matrix.

The scatter matrix is the d-by-d matrix S = X′TX′ =
(
X−1μT

)T (
X−1μT

)
= XTX− nM,

where M = μμT is a d-by-d matrix whose entries are products of column means M j c =
μ jμc . The covariance matrix of X is Σ = 1

n S whose entries are the pairwise covari-

ances σ j c = 1
n
∑n

i=1

(
Xi j −μ j

)(
Xi c −μc

)= 1
n

(∑n
i=1 Xi j Xi c −μiμc

)
. Two uncorrelated fea-

tures have a covariance close to 0; positively correlated features have a positive covari-

ance, indicating a certain tendency to increase or decrease together; a negative covari-

ance indicates that if one feature increases, the other tends to decrease and vice versa.

σ j j = 1
n
∑n

i=1

(
Xi j −μ j

)2 = 1
n

(∑n
i=1 X2

i j −μ2
j

)
is the variance of column j , also denoted

as σ2
j . The variance is always positive and indicates the spread of the values of a feature

around their mean.

A small example clarifies these definitions:

X=

⎛
⎜⎝

5 0

3 5

1 7

⎞
⎟⎠ 1μT =

⎛
⎜⎝

3 4

3 4

3 4

⎞
⎟⎠ X′ =

⎛
⎜⎝

2 −4

0 1

−2 3

⎞
⎟⎠ G=

⎛
⎜⎝

25 15 5

15 34 38

5 38 50

⎞
⎟⎠

XTX=
(

35 22

22 74

)
M=
(

9 12

12 16

)
S=
(

8 −14

−14 26

)
Σ=
(

8/3 −14/3

−14/3 26/3

)

We see that the two features are negatively correlated and that the second feature has the

larger variance. Another way to calculate the scatter matrix is as a sum of outer products,

one for each data point: S=∑n
i=1

(
Xi · −μT

)T (
Xi · −μT

)
. In our example we have

(
X1· −μT

)T (
X1· −μT

)
=
(

2

−4

)(
2 −4

)
=
(

4 −8

−8 16

)

(
X2· −μT

)T (
X2· −μT

)
=
(

0

1

)(
0 1

)
=
(

0 0

0 1

)

(
X3· −μT

)T (
X3· −μT

)
=
(
−2

3

)(
−2 3

)
=
(

4 −6

−6 9

)

Background 7.2. Some more matrix notation.
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Multivariate linear regression

In order to deal with an arbitrary number of features it will be useful to employ matrix

notation (see Background 7.2). We can write univariate linear regression in matrix form

as ⎛
⎜⎜⎝

y1

...

yn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
...

1

⎞
⎟⎟⎠a+

⎛
⎜⎜⎝

x1

...

xn

⎞
⎟⎟⎠b+

⎛
⎜⎜⎝

ε1

...

εn

⎞
⎟⎟⎠

y = a+Xb+ε

In the second form of this equation, y, a, X and ε are n-vectors, and b is a scalar. In

case of d features, all that changes is that X becomes an n-by-d matrix, and b becomes

a d-vector of regression coefficients.

We can apply the by now familiar trick of using homogeneous coordinates to sim-

plify these equations as follows:⎛
⎜⎜⎝

y1

...

yn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 x1

...
...

1 xn

⎞
⎟⎟⎠
(

a

b

)
+

⎛
⎜⎜⎝

ε1

...

εn

⎞
⎟⎟⎠

y = X◦w+ε

with X◦ an n-by-(d +1) matrix whose first column is all 1s and the remaining columns

are the columns of X, and w has the intercept as its first entry and the regression coef-

ficients as the remaining d entries. For convenience we will often blur the distinction

between these two formulations and state the regression equation as y=Xw+ε with X

having d columns and w having d rows – from the context it will be clear whether we

are representing the intercept by means of homogeneous coordinates, or have rather

zero-centred the target and features to achieve a zero intercept.

In the univariate case we were able to obtain a closed-form solution for w: can

we do the same in the multivariate case? First, we are likely to need the covariances

between every feature and the target variable. Consider the expression XTy, which is

an n-vector, the j -th entry of which is the product of the j -th row of XT – i.e., the j -th

column of X, which is (x1 j , . . . , xn j ) – with (y1, . . . , yn):

(XTy) j =
n∑

i=1
xi j yi =

n∑
i=1

(xi j −μ j )(yi − y)+nμ j y = n(σ j y +μ j y)

Assuming for the moment that every feature is zero-centred, we have μ j = 0 and thus

XTy is an n-vector holding all the required covariances (times n).

In the univariate case we needed to normalise the features to have unit variance.

In the multivariate case we can achieve this by means of a d-by-d scaling matrix: a
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diagonal matrix with diagonal entries 1/nσ j j . If S is a diagonal matrix with diagonal

entries nσ j j , we can get the required scaling matrix by simply inverting S. So our first

stab at a solution for the multivariate regression problem is

ŵ= S−1XTy (7.2)

As it turns out, the general case requires a more elaborate matrix instead of S:

ŵ= (XTX)−1XTy (7.3)

Let us try to understand the term (XTX)−1 a bit better. Assume that the features are

uncorrelated (meaning the covariance between every pair of different features is 0)

in addition to being zero-centred. In the notation of Background 7.2, the covariance

matrix Σ is diagonal with entries σ j j . Since XTX = n(Σ+M), and since the entries of

M are 0 because the columns of X are zero-centred, this matrix is also diagonal with

entries nσ j j – in fact, it is the matrix S referred to above. In other words, assuming

zero-centred and uncorrelated features, (XTX)−1 reduces to our scaling matrix S−1. In

the general case we cannot make any assumptions about the features, and (XTX)−1 acts

as a transformation that decorrelates, centres and normalises the features.

To make this a bit more concrete, the next example shows how this works out in the

bivariate case.

Example 7.3 (Bivariate linear regression in matrix notation). First, we derive

the basic expressions.

XTX =
(

x11 · · · xn1

x12 · · · xn2

)⎛⎜⎜⎝
x11 x12

...
...

xn1 xn2

⎞
⎟⎟⎠= n

(
σ11+x1

2 σ12+x1 x2

σ12+x1 x2 σ22+x2
2

)

(XTX)−1 = 1

nD

(
σ22+x2

2 −σ12−x1 x2

−σ12−x1 x2 σ11+x1
2

)

D = (σ11+x1
2)(σ22+x2

2)− (σ12+x1 x2)2

XTy =
(

x11 · · · xn1

x12 · · · xn2

)⎛⎜⎜⎝
y1

...

yn

⎞
⎟⎟⎠= n

(
σ1y +x1 y

σ2y +x2 y

)

We now consider two special cases. The first is that X is in homogeneous coordi-

nates, i.e., we are really dealing with a univariate problem. In that case we have
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xi 1 = 1 for 1≤ i ≤ n; x1 = 1; and σ11 = σ12 = σ1y = 0. We then obtain (we write x

instead of x2, σxx instead of σ22 and σx y instead of σ2y ):

(XTX)−1 = 1

nσxx

(
σxx +x2 −x

−x 1

)

XTy = n

(
y

σx y +x y

)

ŵ= (XTX)−1XTy = 1

σxx

(
σxx y −σx y x

σx y

)

This is the same result as obtained in Example 7.1.

The second special case we consider is where we assume x1, x2 and y to be

zero-centred, which means that the intercept is zero and w contains the two re-

gression coefficients. In this case we obtain

(XTX)−1 = 1

n(σ11σ22−σ2
12)

(
σ22 −σ12

−σ12 σ11

)

XTy = n

(
σ1y

σ2y

)

ŵ= (XTX)−1XTy = 1

(σ11σ22−σ2
12)

(
σ22σ1y −σ12σ2y

σ11σ2y −σ12σ1y

)

The last expression shows, e.g., that the regression coefficient for x1 may be non-

zero even if x1 doesn’t correlate with the target variable (σ1y = 0), on account of

the correlation between x1 and x2 (σ12 
= 0).

Notice that if we do assume σ12 = 0 then the components of ŵ reduce to σ j y /σ j j ,

which brings us back to Equation 7.2. Assuming uncorrelated features effectively de-

composes a multivariate regression problem into d univariate problems. We shall see

several other examples of decomposing multivariate learning problems into univari-

ate problems in this book – in fact, we have already seen an example in the form of the

�naive Bayes classifier in Chapter 1. So, you may wonder, why take feature correlation

into account at all?

The answer is that ignoring feature correlation can be harmful in certain situa-

tions. Consider Figure 7.3: on the left, there is little correlation among the features,

and as a result the samples provide a lot of information about the true function. On
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Figure 7.3. (left) Regression functions learned by linear regression. The true function is y =
x1+x2 (red plane). The red points are noisy samples of this function; the black points show them

projected onto the (x1, x2)-plane. The green plane indicates the function learned by linear re-

gression; the blue plane is the result of decomposing the problem into two univariate regression

problems (blue points). Both are good approximations of the true function. (right) The same

function, but now x1 and x2 are highly (negatively) correlated. The samples now give much less

information about the true function: indeed, from the univariate decomposition it appears that

the function is constant.

the right, the features are highly negatively correlated in such a way that the sampled

values y = x1+ x2+ ε appear nearly constant, as any increase in one feature is accom-

panied by a nearly equal decrease in the other. As a result, decomposing the problem

into two univariate regression problems leads to learning a nearly constant function.

To be fair, taking the full covariance matrix into account doesn’t do so well either in

this example. However, although we will not explore the details here, one advantage of

the full covariance approach is that it allows us to recognise that we can’t place much

confidence in our estimates of the regression parameters in this situation. The com-

putational cost of computing the closed-form solution in Equation 7.3 lies in inverting

the d-by-d matrix XTX, which can be prohibitive in high-dimensional feature spaces.

Regularised regression

We have just seen a situation in which least-squares regression can become unstable:

i.e., highly dependent on the training data. Instability is a manifestation of a tendency

to overfit. Regularisation is a general method to avoid such overfitting by applying

additional constraints to the weight vector. A common approach is to make sure the

weights are, on average, small in magnitude: this is referred to as shrinkage. To show

how this can be achieved, we first write down the least-squares regression problem as

an optimisation problem:

w∗ = argmin
w

(y−Xw)T(y−Xw)
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The right-hand side is just a way to write the sum of squared residuals as a dot product.

The regularised version of this optimisation is then as follows:

w∗ = argmin
w

(y−Xw)T(y−Xw)+λ||w||2 (7.4)

where ||w||2 =∑i w2
i is the squared norm of the vector w, or, equivalently, the dot prod-

uct wTw; λ is a scalar determining the amount of regularisation. This regularised prob-

lem still has a closed-form solution:

ŵ= (XTX+λI)−1XTy (7.5)

where I denotes the identity matrix with 1s on the diagonal and 0s everywhere else.

Comparing this with Equation 7.3 on p.202 we see that regularisation amounts to adding

λ to the diagonal of XTX, a well-known trick to improve the numerical stability of ma-

trix inversion. This form of least-squares regression is known as ridge regression.

An interesting alternative form of regularised regression is provided by the lasso,

which stands for ‘least absolute shrinkage and selection operator’. It replaces the ridge

regularisation term
∑

i w2
i with the sum of absolute weights

∑
i |wi |. (Using terminol-

ogy that will be introduced in Definition 8.2 on p.235: lasso uses L1 regularisation

where ridge regression uses the L2 norm.) The result is that some weights are shrunk,

but others are set to 0, and so the lasso regression favours sparse solutions. It should be

added that lasso regression is quite sensitive to the regularisation parameter λ, which

is usually set on hold-out data or in cross-validation. Also, there is no closed-form so-

lution and so some numerical optimisation technique must be applied.

Using least-squares regression for classification

So far we have used the least-squares method to construct function approximators.

Interestingly, we can also use linear regression to learn a binary classifier by encoding

the two classes as real numbers. For instance, we can label the Pos positive examples

with y⊕ = +1 and the Neg negative examples with y� = −1. It then follows that XTy =
Pos μ⊕−Neg μ�, whereμ⊕ andμ� are d-vectors containing each feature’s mean values

for the positive and negative examples, respectively.

Example 7.4 (Univariate least-squares classifier). In the univariate case we

have
∑

i xi yi = Pos μ⊕ −Neg μ�; we also know (see Example 7.3) that
∑

i xi yi =
n(σx y + x y), and so σx y = pos μ⊕ − neg μ� − x y . Since x = pos μ⊕ + neg μ�

and y = pos− neg, we can rewrite the covariance between x and y as σx y =
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�2 �1.5 �1 �0.5 0 0.5 1 1.50
�1

0

1

Figure 7.4. Using univariate linear regression to obtain a decision boundary. The 10 negative

examples are labelled with y� = −1 and the 20 positive examples are labelled y⊕ = +1. μ� and

μ⊕ are indicated by red circles. The blue line is the linear regression line y = y + b̂(x − x), and

the crosshair indicates the decision boundary x0 = x− y/b̂. This results in three examples being

misclassified – notice that this is the best that can be achieved with the given data.

2pos ·neg (μ⊕−μ�), and so the slope of the regression line is

b̂ = 2pos ·neg
μ⊕−μ�

σxx
(7.6)

This equation shows that the slope of the regression line increases with the sepa-

ration between the classes (measured as the distance between the class means in

proportion to the feature’s variance), but also decreases if the class distribution

becomes skewed.

The regression equation y = y + b̂(x − x) can then be used to obtain a deci-

sion boundary. We need to determine the point (x0, y0) such that y0 is half-way

between y⊕ and y� (i.e., y0 = 0 in our case). We then have

x0 = x+ y0− y

b̂
= x− pos−neg

2pos ·neg

σxx

μ⊕−μ�

That is, if there are equal numbers of positive and negative examples we simply

threshold the feature at the feature mean x; in case of unequal class distribution

we shift this threshold to the left or right as appropriate (Figure 7.4).

In the general case, the least-squares classifier learns the decision boundary w·x= t

with

w= (XTX)−1(Pos μ⊕−Neg μ�) (7.7)
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We would hence assign class ŷ = sign(w ·x− t ) to instance x, where

sign(x)=

⎧⎪⎨
⎪⎩
+1 if x > 0

0 if x = 0

−1 if x < 0

Various simplifying assumptions can be made, including zero-centred features, equal-

variance features, uncorrelated features and equal class prevalences. In the simplest

case, when all these assumptions are made, Equation 7.7 reduces to w = c(μ⊕ −μ�)

where c is some scalar that can be incorporated in the decision threshold t . We recog-

nise this as the �basic linear classifier that was introduced in the Prologue. Equation

7.7 thus tells us how to adapt the basic linear classifier, using the least-squares method,

in order to take feature correlation and unequal class distributions into account.

In summary, a general way of constructing a linear classifier with decision boundary

w ·x = t is by constructing w as M−1(n⊕μ⊕ −n�μ�), with different possible choices of

M, n⊕ and n�. The full covariance approach with M=XTX has time complexity O(n2d)

for construction of M and O(d 3) for inverting it,1 so this approach becomes unfeasible

with large numbers of features.

7.2 The perceptron

Recall from Chapter 1 that labelled data is called �linearly separable if there exists a

linear decision boundary separating the classes. The least-squares classifier may find

a perfectly separating decision boundary if one exists, but this is not guaranteed. To

see this, suppose that the basic linear classifier achieves perfect separation for a given

training set. Now, move all but one of the positive points away from the negative class.

The decision boundary will also move away from the negative class, at some point

crossing the one positive that remains fixed. By construction, the modified data is

still linearly separable, since the original decision boundary separates it; however, the

statistics of the modified data are such that the basic linear classifier will misclassify

the one positive outlier.

A linear classifier that will achieve perfect separation on linearly separable data is

the perceptron, originally proposed as a simple neural network. The perceptron iter-

ates over the training set, updating the weight vector every time it encounters an incor-

rectly classified example. For example, let xi be a misclassified positive example, then

we have yi =+1 and w·xi < t . We therefore want to find w′ such that w′·xi >w·xi , which

moves the decision boundary towards and hopefully past xi . This can be achieved by

calculating the new weight vector as w′ =w+ηxi , where 0< η≤ 1 is the learning rate.

We then have w′ ·xi =w ·xi +ηxi ·xi >w ·xi as required. Similarly, if x j is a misclassified

1A more sophisticated algorithm can achieve O(d2.8), but this is probably the best we can do.
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negative example, then we have y j =−1 and w·x j > t . In this case we calculate the new

weight vector as w′ =w−ηx j , and thus w′ ·x j =w ·x j −ηx j ·x j <w ·x j . The two cases

can be combined in a single update rule:

w′ =w+ηyi xi (7.8)

The perceptron training algorithm is given in Algorithm 7.1. It iterates through the

training examples until all examples are correctly classified. The algorithm can easily

be turned into an online algorithm that processes a stream of examples, updating the

weight vector only if the last received example is misclassified. The perceptron is guar-

anteed to converge to a solution if the training data is linearly separable, but it won’t

converge otherwise. Figure 7.5 gives a graphical illustration of the perceptron training

algorithm. In this particular example I initialised the weight vector to the basic linear

classifier, which means the learning rate does have an effect on how quickly we move

away from the initial decision boundary. However, if the weight vector is initialised to

the zero vector, it is easy to see that the learning rate is just a constant factor that does

not affect convergence. We will set it to 1 in the remainder of this section.

The key point of the perceptron algorithm is that, every time an example xi is mis-

classified, we add yi xi to the weight vector. After training has completed, each exam-

ple has been misclassified zero or more times – denote this number αi for example xi .

Algorithm 7.1: Perceptron(D,η) – train a perceptron for linear classification.

Input : labelled training data D in homogeneous coordinates;

learning rate η.

Output : weight vector w defining classifier ŷ = sign(w ·x).

1 w←0 ; // Other initialisations of the weight vector are possible

2 converged←false;

3 while converged= false do

4 converged←true;

5 for i = 1 to |D| do

6 if yi w ·xi ≤ 0 // i.e., ŷi 
= yi

7 then

8 w←w+ηyi xi ;

9 converged←false; // We changed w so haven’t converged yet

10 end

11 end

12 end
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Figure 7.5. (left) A perceptron trained with a small learning rate (η= 0.2). The circled examples

are the ones that trigger the weight update. (middle) Increasing the learning rate to η= 0.5 leads

in this case to a rapid convergence. (right) Increasing the learning rate further to η = 1 may

lead to too aggressive weight updating, which harms convergence. The starting point in all three

cases was the basic linear classifier.

Using this notation the weight vector can be expressed as

w=
n∑

i=1
αi yi xi (7.9)

In other words, the weight vector is a linear combination of the training instances. The

perceptron shares this property with, e.g., the basic linear classifier:

wblc =μ⊕−μ� = 1

Pos

∑
x⊕∈Tr⊕

x⊕− 1

Neg

∑
x�∈Tr�

x� = ∑
x⊕∈Tr⊕

α⊕c(x⊕)x⊕+ ∑
x�∈Tr�

α�c(x�)x�

(7.10)

Algorithm 7.2: DualPerceptron(D) – perceptron training in dual form.

Input : labelled training data D in homogeneous coordinates.

Output : coefficients αi defining weight vector w=∑|D|i=1αi yi xi .

1 αi ← 0 for 1≤ i ≤ |D|;
2 converged←false;

3 while converged= false do

4 converged←true;

5 for i = 1 to |D| do

6 if yi
∑|D|

j=1α j y j xi ·x j ≤ 0 then

7 αi ←αi +1;

8 converged←false;

9 end

10 end

11 end
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Figure 7.6. Three differently trained linear classifiers on a data set of 100 positives (top-right)

and 50 negatives (bottom-left): the basic linear classifier in red, the least-squares classifier in

orange and the perceptron in green. Notice that the perceptron perfectly separates the training

data, but its heuristic approach may lead to overfitting in certain situations.

where c(x) is the true class of example x (i.e., +1 or −1), α⊕ = 1/Pos and α� = 1/Neg. In

the dual, instance-based view of linear classification we are learning instance weights

αi rather than feature weights w j . In this dual perspective, an instance x is classified

as ŷ = sign
(∑n

i=1αi yi xi ·x
)
. This means that, during training, the only information

needed about the training data is all pairwise dot products: the n-by-n matrix G =
XXT containing these dot products is called the Gram matrix. Algorithm 7.2 gives the

dual form of the perceptron training algorithm. We will encounter this instance-based

perspective again when we discuss support vector machines in the next section.

Figure 7.6 demonstrates the difference between the basic linear classifier, the least-

squares classifier and the perceptron on some random data. For this particular data

set, neither the basic linear classifier nor the least-squares classifier achieves perfect

separation, but the perceptron does. One difference with other linear methods is that

we cannot derive a closed-form solution for the weight vector learned by the percep-

tron, so it is a more heuristic approach.

The perceptron can easily be turned into a linear function approximator (Algorithm

7.3). To this end the update rule is changed to w′ =w+(yi − ŷi )2xi , which uses squared
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residuals. This is unlikely to converge to the exact function, so the algorithm simply

runs for a fixed number of training epochs (an epoch is one complete run through the

training data). Alternatively, one could run the algorithm until a bound on the sum of

squared residuals is reached.

7.3 Support vector machines

Linearly separable data admits infinitely many decision boundaries that separate the

classes, but intuitively some of these are better than others. For example, the left and

middle decision boundaries in Figure 7.5 seem to be unnecessarily close to some of

the positives; while the one on the right leaves a bit more space on either side, it

doesn’t seem particularly good either. To make this a bit more precise, recall that in

Section 2.2 we defined the �margin of an example assigned by a scoring classifier as

c(x)ŝ(x), where c(x) is +1 for positive examples and −1 for negative examples and ŝ(x)

is the score of example x. If we take ŝ(x) =w ·x− t , then a true positive xi has margin

w · xi − t > 0 and a true negative x j has margin −(w · x j − t ) > 0. For a given training

set and decision boundary, let m⊕ be the smallest margin of any positive, and m� the

smallest margin of any negative, then we want the sum of these to be as large as possi-

ble. This sum is independent of the decision threshold t , as long as we keep the nearest

positives and negatives at the right sides of the decision boundary, and so we re-adjust

t such that m⊕ and m� become equal. Figure 7.7 depicts this graphically in a two-

dimensional instance space. The training examples nearest to the decision boundary

are called support vectors: as we shall see, the decision boundary of a support vector

machine (SVM) is defined as a linear combination of the support vectors.

The margin is thus defined as m/||w||, where m is the distance between the deci-

sion boundary and the nearest training instances (at least one of each class) as

Algorithm 7.3: PerceptronRegression(D,T ) – train a perceptron for regression.

Input : labelled training data D in homogeneous coordinates;

maximum number of training epochs T .

Output : weight vector w defining function approximator ŷ =w ·x.

1 w←0; t ←0;

2 while t < T do

3 for i = 1 to |D| do

4 w←w+ (yi − ŷi )2xi ;

5 end

6 t ← t +1;

7 end
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Figure 7.7. The geometry of a support vector classifier. The circled data points are the support

vectors, which are the training examples nearest to the decision boundary. The support vector

machine finds the decision boundary that maximises the margin m/||w||.

measured along w. Since we are free to rescale t , ||w|| and m, it is customary to choose

m = 1. Maximising the margin then corresponds to minimising ||w|| or, more con-

veniently, 1
2 ||w||2, provided of course that none of the training points fall inside the

margin. This leads to a quadratic, constrained optimisation problem:

w∗, t∗ = argmin
w,t

1

2
||w||2 subject to yi (w ·xi − t )≥ 1,1≤ i ≤ n

We will approach this using the method of Lagrange multipliers (see Background 7.3).

Adding the constraints with multipliersαi for each training example gives the Lagrange

function

Λ(w, t ,α1, . . . ,αn) = 1

2
||w||2−

n∑
i=1

αi (yi (w ·xi − t )−1)

= 1

2
||w||2−

n∑
i=1

αi yi (w ·xi )+
n∑

i=1
αi yi t +

n∑
i=1

αi

= 1

2
w ·w−w ·

(
n∑

i=1
αi yi xi

)
+ t

(
n∑

i=1
αi yi

)
+

n∑
i=1

αi

While this looks like a formidable formula, some further analysis will allow us to derive

the simpler dual form of the Lagrange function.

By taking the partial derivative of the Lagrange function with respect to t and set-

ting it to 0 we find that for the optimal threshold t we have
∑n

i=1αi yi = 0. Similarly, by
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Optimisation is a broad term denoting the problem of finding the best item or value

among a set of alternatives. We have already seen a very simple, unconstrained form of

optimisation in Example 7.1 on p.197, where we found the values of a and b minimising

the sum of squared residuals f (a,b)=∑n
i=1(wi − (a+bhi ))2; this can be denoted as

a∗,b∗ = argmin
a,b

f (a,b)

f is called the objective function; it can be linear, quadratic (as in this case), or more com-

plex. We found the minimum of f by setting the partial derivatives of f with respect to

a and b to 0, and solving for a and b; the vector of these partial derivatives is called the

gradient and denoted ∇ f , so a succinct way of defining the unconstrained optimisation

problem is: find a and b such that ∇ f (a,b)= 0. In this particular case the objective func-

tion is convex, which essentially means that there is a unique global minimum. This is,

however, not always the case.

A constrained optimisation problem is one where the alternatives are subject to con-

straints, for instance

a∗,b∗ = argmin
a,b

f (a,b) subject to g (a,b)= c

If the relationship expressed by the constraint is linear, say a − b = 0, we can of course

eliminate one of the variables and solve the simpler, unconstrained problem. However,

this may not be possible if the constraints are non-linear. Lagrange multipliers are a pow-

erful way of dealing with the general case. We form the Lagrange function defined by

Λ(a,b,λ)= f (a,b)−λ(g (a,b)−c)

where λ is the Lagrange multiplier, and solve the unconstrained problem ∇Λ(a,b,λ)= 0.

Since ∇a,bΛ(a,b,λ)=∇ f (a,b)−λ∇g (a,b) and ∇λΛ(a,b,λ)= g (a,b)− c, this is a succinct

way of requiring (i) that the gradients of f and g point in the same direction, and (ii) that

the constraint is satisfied. We can include multiple equality constraints and also inequal-

ity constraints, each with their own Lagrange multiplier.

From the Lagrange function it is possible to derive a dual optimisation problem where

we find the optimal values of the Lagrange multipliers. In general, the solution to the

dual problem is only a lower bound on the solution to the primal problem, but under a

set of conditions known as the Karush–Kuhn–Tucker conditions (KKT) the two solutions

become equal. The quadratic optimisation problem posed by support vector machines is

usually solved in its dual form.

Background 7.3. Basic concepts and terminology in mathematical optimisation.
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taking the partial derivative of the Lagrange function with respect to w we see that the

Lagrange multipliers define the weight vector as a linear combination of the training

examples:

∂

∂w
Λ(w, t ,α1, . . . ,αn)= ∂

∂w

1

2
w ·w− ∂

∂w
w ·
(

n∑
i=1

αi yi xi

)
=w−

n∑
i=1

αi yi xi

Since this partial derivative is 0 for an optimal weight vector we conclude w=∑n
i=1αi yi xi

– the same expression as we derived for the perceptron in Equation 7.9 on p.209. For

the perceptron, the instance weights αi are non-negative integers denoting the num-

ber of times an example has been misclassified in training. For a support vector ma-

chine, the αi are non-negative reals. What they have in common is that, if αi = 0 for

a particular example xi , that example could be removed from the training set without

affecting the learned decision boundary. In the case of support vector machines this

means that αi > 0 only for the support vectors: the training examples nearest to the

decision boundary.

Now, by plugging the expressions
∑n

i=1αi yi = 0 and w =∑n
i=1αi yi xi back into the

Lagrangian we are able to eliminate w and t , and hence obtain the dual optimisation

problem, which is entirely formulated in terms of the Lagrange multipliers:

Λ(α1, . . . ,αn) = −1

2

(
n∑

i=1
αi yi xi

)
·
(

n∑
i=1

αi yi xi

)
+

n∑
i=1

αi

= −1

2

n∑
i=1

n∑
j=1

αiα j yi y j xi ·x j +
n∑

i=1
αi

The dual problem is to maximise this function under positivity constraints and one

equality constraint:

α∗1 , . . . ,α∗n =argmax
α1,...,αn

−1

2

n∑
i=1

n∑
j=1

αiα j yi y j xi ·x j +
n∑

i=1
αi

subject to αi ≥ 0,1≤ i ≤ n and
n∑

i=1
αi yi = 0

The dual form of the optimisation problem for support vector machines illustrates

two important points. First, it shows that searching for the maximum-margin decision

boundary is equivalent to searching for the support vectors: they are the training exam-

ples with non-zero Lagrange multipliers, and through w=∑n
i=1αi yi xi they completely

determine the decision boundary. Secondly, it shows that the optimisation problem

is entirely defined by pairwise dot products between training instances: the entries

of the Gram matrix. As we shall see in Section 7.5, this paves the way for a powerful

adaptation of support vector machines that allows them to learn non-linear decision

boundaries.

The following example makes these issues a bit more concrete by showing detailed

calculations on some toy data.
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Figure 7.8. (left) A maximum-margin classifier built from three examples, with w = (0,−1/2)

and margin 2. The circled examples are the support vectors: they receive non-zero Lagrange

multipliers and define the decision boundary. (right) By adding a second positive the decision

boundary is rotated to w= (3/5,−4/5) and the margin decreases to 1.

Example 7.5 (Two maximum-margin classifiers and their support vectors).

Let the data points and labels be as follows (see Figure 7.8 (left)):

X=

⎛
⎜⎝

1 2

−1 2

−1 −2

⎞
⎟⎠ y=

⎛
⎜⎝
−1

−1

+1

⎞
⎟⎠ X′ =

⎛
⎜⎝
−1 −2

1 −2

−1 −2

⎞
⎟⎠

The matrix X′ on the right incorporates the class labels; i.e., the rows are yi xi . The

Gram matrix is (without and with class labels):

XXT =

⎛
⎜⎝

5 3 −5

3 5 −3

−5 −3 5

⎞
⎟⎠ X′X′T =

⎛
⎜⎝

5 3 5

3 5 3

5 3 5

⎞
⎟⎠

The dual optimisation problem is thus

argmax
α1,α2,α3

−1

2

(
5α2

1+3α1α2+5α1α3+3α2α1+5α2
2+3α2α3+5α3α1

+3α3α2+5α2
3

)+α1+α2+α3

= argmax
α1,α2,α3

−1

2

(
5α2

1+6α1α2+10α1α3+5α2
2+6α2α3+5α2

3

)+α1+α2+α3

subject to α1 ≥ 0,α2 ≥ 0,α3 ≥ 0 and −α1 −α2 +α3 = 0. While in practice such

problems are solved by dedicated quadratic optimisation solvers, here we will

show how to solve this toy problem by hand.
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Using the equality constraint we can eliminate one of the variables, say α3,

and simplify the objective function to

argmax
α1,α2,α3

−1

2

(
5α2

1+6α1α2+10α1(α1+α2)+5α2
2+6α2(α1+α2)+5(α1+α2)2)

+2α1+2α2

= argmax
α1,α2,α3

−1

2

(
20α2

1+32α1α2+16α2
2

)+2α1+2α2

Setting partial derivatives to 0 we obtain−20α1−16α2+2= 0 and−16α1−16α2+
2 = 0 (notice that, because the objective function is quadratic, these equations

are guaranteed to be linear). We therefore obtain the solution α1 = 0 and α2 =
α3 = 1/8. We then have w = 1/8(x3 − x2) =

(
0

−1/2

)
, resulting in a margin of

1/||w|| = 2. Finally, t can be obtained from any support vector, say x2, since y2(w·
x2−t )= 1; this gives−1·(−1−t )= 1, hence t = 0. The resulting maximum-margin

classifier is depicted in Figure 7.8 (left). Notice that the first example x1 is not a

support vector, even though it is on the margin: this is because removing it will

not affect the decision boundary.

We now add an additional positive at (3,1). This gives the following data ma-

trices:

X′ =

⎛
⎜⎜⎜⎜⎝
−1 −2

1 −2

−1 −2

3 1

⎞
⎟⎟⎟⎟⎠ X′X′T =

⎛
⎜⎜⎜⎜⎝

5 3 5 −5

3 5 3 1

5 3 5 −5

−5 1 −5 10

⎞
⎟⎟⎟⎟⎠

It can be verified by similar calculations to those above that the margin decreases

to 1 and the decision boundary rotates to w=
(

3/5

−4/5

)
(Figure 7.8 (right)). The

Lagrange multipliers now are α1 = 1/2, α2 = 0, α3 = 1/10 and α4 = 2/5. Thus,

only x3 is a support vector in both the original and the extended data set.

Soft margin SVM

If the data is not linearly separable, then the constraints w · xi − t ≥ 1 posed by the

examples are not jointly satisfiable. However, there is a very elegant way of adapting

the optimisation problem such that it admits a solution even in this case. The idea is

to introduce slack variables ξi , one for each example, which allow some of them to be

inside the margin or even at the wrong side of the decision boundary – we will call these

margin errors. Thus, we change the constraints to w ·xi − t ≥ 1−ξi and add the sum of
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all slack variables to the objective function to be minimised, resulting in the following

soft margin optimisation problem:

w∗, t∗,ξ∗i =argmin
w,t ,ξi

1

2
||w||2+C

n∑
i=1

ξi

subject to yi (w ·xi − t )≥ 1−ξi and ξi ≥ 0,1≤ i ≤ n (7.11)

C is a user-defined parameter trading off margin maximisation against slack variable

minimisation: a high value of C means that margin errors incur a high penalty, while

a low value permits more margin errors (possibly including misclassifications) in or-

der to achieve a large margin. If we allow more margin errors we need fewer support

vectors, hence C controls to some extent the ‘complexity’ of the SVM and hence is of-

ten referred to as the complexity parameter. It can be seen as a form of regularisation

similar to that discussed in the context of least-squares regression.

The Lagrange function is then as follows:

Λ(w, t ,ξi ,αi ,βi ) = 1

2
||w||2+C

n∑
i=1

ξi −
n∑

i=1
αi (yi (w ·xi − t )− (1−ξi ))−

n∑
i=1

βiξi

= 1

2
w ·w−w ·

(
n∑

i=1
αi yi xi

)
+ t

(
n∑

i=1
αi yi

)
+

n∑
i=1

αi+
n∑

i=1
(C −αi −βi )ξi

= Λ(w, t ,αi )+
n∑

i=1
(C −αi −βi )ξi

For an optimal solution every partial derivative with respect to ξi should be 0, from

which it follows that C −αi −βi = 0 for all i , and hence the added term vanishes from

the dual problem. Furthermore, since both αi and βi are positive, this means that αi

cannot be larger than C , which manifests itself as an additional upper bound on αi in

the dual problem:

α∗1 , . . . ,α∗n =argmax
α1,...,αn

−1

2

n∑
i=1

n∑
j=1

αiα j yi y j xi ·x j +
n∑

i=1
αi

subject to 0≤αi≤C and
n∑

i=1
αi yi = 0 (7.12)

This is a remarkable and beautiful result. It follows from the particular way that

slack variables were added to the optimisation problem in Equation 7.11. By restrict-

ing the slack variables to be positive and adding them to the objective function to be

minimised, they function as penalty terms, measuring deviations on the wrong side of

the margin only. Furthermore, the fact that the βi multipliers do not appear in the dual

objective follows from the fact that the penalty term in the primal objective is linear in

ξi . In effect, these slack variables implement what was called hinge loss in Figure 2.6

on p.63: a margin z > 1 incurs no penalty, and a margin z = 1−ξ ≤ 1 incurs a penalty

ξ= 1− z.



218 7. Linear models

+

+

–

3

4

12

w

–

+

+

–

3

4

12

w

–

Figure 7.9. (left) The soft margin classifier learned with C = 5/16, at which point x2 is about to

become a support vector. (right) The soft margin classifier learned with C = 1/10: all examples

contribute equally to the weight vector. The asterisks denote the class means, and the decision

boundary is parallel to the one learned by the basic linear classifier.

What is the significance of the upper bound C on the αi multipliers? Since C −
αi −βi = 0 for all i , αi = C implies βi = 0. The βi multipliers come from the ξi ≥ 0

constraint, and a multiplier of 0 means that the lower bound is not reached, i.e., ξi > 0

(analogous to the fact that α j = 0 means that x j is not a support vector and hence

w · x j − t > 1). In other words, a solution to the soft margin optimisation problem in

dual form divides the training examples into three cases:

αi = 0 these are outside or on the margin;

0<αi <C these are the support vectors on the margin;

αi =C these are on or inside the margin.

Notice that we still have w=∑n
i=1αi yi xi , and so both second and third case examples

participate in spanning the decision boundary.

Example 7.6 (Soft margins). We continue Example 7.5, where we saw that

adding the positive example x4 = (3,1) to the first three examples significantly

reduced the margin from 2 to 1. We will now show that soft margin classifiers

with larger margins are learned with sufficiently large complexity parameter C .

Recall that the Lagrange multipliers for the classifier in Figure 7.8 (right) are

α1 = 1/2, α2 = 0, α3 = 1/10 and α4 = 2/5. So α1 is the largest multiplier, and as

long as C >α1 = 1/2 no margin errors are tolerated. For C = 1/2 we have α1 =C ,
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and hence for C < 1/2 we have that x1 becomes a margin error and the optimal

classifier is a soft margin classifier. Effectively, with decreasing C the decision

boundary and the upper margin move upward, while the lower margin stays the

same.

The upper margin reaches x2 for C = 5/16 (Figure 7.9 (left)), at which point we

have w=
(

3/8

−1/2

)
, t = 3/8 and the margin has increased to 1.6. Furthermore, we

have ξ1 = 6/8,α1 =C = 5/16,α2 = 0,α3 = 1/16 and α4 = 1/4.

If we now decrease C further, the decision boundary starts to rotate clock-

wise, so that x4 becomes a margin error as well, and only x2 and x3 are sup-

port vectors. The boundary rotates until C = 1/10, at which point we have

w =
(

1/5

−1/2

)
, t = 1/5 and the margin has increased to 1.86. Furthermore, we

have ξ1 = 4/10 and ξ4 = 7/10, and all multipliers have become equal to C (Figure

7.9 (right)).

Finally, when C decreases further the decision boundary stays where it is, but

the norm of the weight vector gradually decreases and all points become margin

errors.

Example 7.6 illustrates an important point: for low enough C , all examples receive

the same multiplier C , and hence we have w = C
∑n

i=1 yi xi = C (Pos ·μ⊕ −Neg ·μ�),

where μ⊕ and μ� are the means of the positive and negative examples, respectively.

In other words, a minimal-complexity soft margin classifier summarises the classes by

their class means in a way very similar to the basic linear classifier. For intermediate

values of C the decision boundary is spanned by the support vectors and the per-class

means of the margin errors.

In summary, support vector machines are linear classifiers that construct the unique

decision boundary that maximises the distance to the nearest training examples (the

support vectors). The complexity parameter C can be used to adjust the number and

severity of allowed margin violations. Training an SVM involves solving a large quadratic

optimisation problem and is usually best left to a dedicated numerical solver.

7.4 Obtaining probabilities from linear classifiers

As we have seen, a linear classifier produces scores ŝ(xi )=w·xi−t that are thresholded

at 0 in order to classify examples. Owing to the geometric nature of linear classifiers,

such scores can be used to obtain the (signed) distance of xi from the decision bound-

ary. To see this, notice that the length of the projection of xi onto w is ||xi ||cosθ, where
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Figure 7.10. We can think of a linear classifier as a projection onto the direction given by w, here

assumed to be a unit vector. w · x− t gives the signed distance from the decision boundary on

the projection line. Also indicated are the class means μ⊕ and μ�, and the corresponding mean

distances d⊕ and d�.

θ is the angle between xi and w. Since w ·xi = ||w|| ||xi ||cosθ, we can write this length

as (w ·xi )/||w||. This gives the following signed distance:

d(xi )= ŝ(xi )

||w|| =
w ·xi − t

||w|| =w′ ·xi − t ′

with w′ = w/||w|| rescaled to unit length and t ′ = t/||w|| the corresponding rescaled

intercept. The sign of this quantity tells us which side of the decision boundary we are

on: positive distances for points on the ‘positive’ side of the decision boundary (the

direction in which w points) and negative distances on the other side (Figure 7.10).

This geometric interpretation of the scores produced by linear classifiers offers an

interesting possibility for turning them into probabilities, a process that was called

�calibration in Section 2.3. Let d
⊕

denote the mean distance of the positive exam-

ples to the decision boundary: i.e., d
⊕ =w·μ⊕−t , where μ⊕ is the mean of the positive

examples and w is unit length (although the latter assumption is not strictly necessary,

as it will turn out that the weight vector will be rescaled). It would not be unreasonable

to expect that the distance of positive examples to the decision boundary is normally

distributed around this mean:2 that is, when plotting a histogram of these distances,

2For instance, with sufficiently many examples this could be justified by the central limit theorem: the

sum of a large number of identically distributed independent random variables is approximately normally

distributed.
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we would expect the familiar bell curve to appear. Under this assumption, the prob-

ability density function of d is P (d |⊕) = 1�
2πσ

exp
(
− (d−d

⊕
)2

2σ2

)
(see Background 9.1 on

p.267 if you need to remind yourself about the normal distribution). Similarly, the dis-

tances of negative examples to the decision boundary can be expected to be normally

distributed around d
� =w ·μ�− t , with d

� < 0< d
⊕

. We will assume that both normal

distributions have the same variance σ2.

Suppose we now observe a point x with distance d(x). We classify this point as

positive if d(x)> 0 and as negative if d(x)< 0, but we want to attach a probability p̂(x)=
P (⊕|d(x)) to these predictions. Using Bayes’ rule we obtain

P (⊕|d(x))= P (d(x)|⊕)P (⊕)

P (d(x)|⊕)P (⊕)+P (d(x)|�)P (�)
= LR

LR+1/clr

where LR is the likelihood ratio obtained from the normal score distributions, and clr

is the class ratio. We will assume for simplicity that clr = 1 in the derivation below.

Furthermore, assume for now that σ2 = 1 and d
⊕ = −d

� = 1/2 (we will relax this in a

moment). We then have

LR = P (d(x)|⊕)

P (d(x)|�)
= exp

(−(d(x)−1/2)2/2
)

exp
(−(d(x)+1/2)2/2

)
= exp

(−(d(x)−1/2)2/2+ (d(x)+1/2)2/2
)= exp(d(x))

and so

P (⊕|d(x))= exp(d(x))

exp(d(x))+1
= exp(w ·x− t )

exp(w ·x− t )+1

So, in order to obtain probability estimates from a linear classifier outputting distance

scores d , we convert d into a probability by means of the mapping d �→ exp(d)
exp(d)+1 (or,

equivalently, d �→ 1
1+exp(−d) ). This S-shaped or sigmoid function is called the logistic

function; it finds applications in a wide range of areas (Figure 7.11).

Suppose now that d
⊕ = −d

�
as before, but we do not assume anything about the

magnitude of these mean distances or of σ2. In this case we have

LR = exp

(
−(d(x)−d

⊕
)2+ (d(x)−d

�
)2

2σ2

)

= exp

⎛
⎜⎝2d

⊕
d(x)−

(
d
⊕)2−2d

�
d(x)+

(
d
�)2

2σ2

⎞
⎟⎠= exp

(
γd(x)

)

with a = (d
⊕ −d

�
)/σ2 a scaling factor that rescales the weight vector so that the mean

distances per class are one unit of variance apart. In other words, by taking the scaling

factor γ into account, we can drop our assumption that w is a unit vector.

If we also drop the assumption that d
⊕

and d
�

are symmetric around the decision
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Figure 7.11. The logistic function, a useful function for mapping distances from a linear deci-

sion boundary into an estimate of the positive posterior probability. The fat red line indicates

the standard logistic function p̂(d)= 1
1+exp(−d) ; this function can be used to obtain probability

estimates if the two classes are equally prevalent and the class means are equidistant from the

decision boundary and one unit of variance apart. The steeper and flatter red lines show how

the function changes if the class means are 2 and 1/2 units of variance apart, respectively. The

three blue lines show how these curves change if d0 = 1, which means that the positives are on

average further away from the decision boundary.

boundary, then we obtain the most general form

LR = P (d(x)|⊕)

P (d(x)|�)
= exp

(
γ(d(x)−d0)

)
(7.13)

γ= d
⊕−d

�

σ2 = w · (μ⊕−μ�)

σ2 , d0 = d
⊕+d

�

2
= w · (μ⊕+μ�)

2
− t

d0 has the effect of moving the decision boundary from w · x = t to x = (μ⊕ +μ�)/2,

that is, halfway between the two class means. The logistic mapping thus becomes d �→
1

1+exp(−γ(d−d0)) , and the effect of the two parameters is visualised in Figure 7.11.

Example 7.7 (Logistic calibration of a linear classifier). Logistic calibration has

a particularly simple form for the basic linear classifier, which has w=μ⊕ −μ�.

It follows that

d
⊕−d

� = w · (μ⊕−μ�)

||w|| = ||μ
⊕−μ�||2

||μ⊕−μ�|| = ||μ
⊕−μ�||

and hence γ = ||μ⊕ −μ�||/σ2. Furthermore, d0 = 0 as (μ⊕ +μ�)/2 is already

on the decision boundary. So in this case logistic calibration does not move the
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Figure 7.12. The surface shows the sigmoidal probability estimates resulting from logistic cali-

bration of the basic linear classifier on random data satisfying the assumptions of logistic cali-

bration.

decision boundary, and only adjusts the steepness of the sigmoid according to

the separation of the classes. Figure 7.12 illustrates this for some data sampled

from two normal distributions with the same diagonal covariance matrix.

To summarise: in order to get calibrated probability estimates out of a linear clas-

sifier, we first calculate the mean distances d
⊕

and d
�

and the variance σ2, and from

those the location parameter d0 and the scaling parameter γ. The likelihood ratio is

then LR = exp
(
γ(d(x)−d0)

) = exp
(
γ(w ·x− t −d0)

)
. Since the logarithm of the likeli-

hood ratio is linear in x, such models are called log-linear models. Notice that γ(w ·x−
t −d0)=w′ ·x− t ′ with w′ = γw and t ′ = γ(t +d0). This means that the logistic calibra-

tion procedure can change the location of the decision boundary but not its direction.

However, there may be an alternative weight vector with a different direction that as-

signs a higher likelihood to the data. Finding the maximum-likelihood linear classifier

using the logistic model is called �logistic regression, and will be discussed in Section

9.3.

As an alternative to logistic calibration, we can also use the isotonic calibration
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Figure 7.13. (left) ROC curve and convex hull of the same model and data as in Figure 7.12.

(right) The convex hull can be used as a non-parametric calibration method. Each segment of

the convex hull corresponds to a plateau of the probability surface.

method discussed in Section 2.3. Figure 7.13 (left) shows the ROC curve of the basic lin-

ear classifier on the data in Figure 7.12 as well as its convex hull. We can then construct

a piecewise linear calibration function with plateaus corresponding to the convex hull

segments, as shown in Figure 7.13 (right). In contrast with the logistic method this cal-

ibration method is non-parametric and hence does not make any assumptions about

the data. In order to avoid overfitting, non-parametric methods typically need more

data than parametric methods. It is interesting to note that no grading takes place on

the plateaus, which are rather similar to the segments of a grouping model. In other

words, convex hull calibration can potentially produce a hybrid between grouping and

grading models.

7.5 Going beyond linearity with kernel methods

In this chapter we have looked at linear methods for classification and regression.

Starting with the least-squares method for regression, we have seen how to adapt it

to binary classification, resulting in a version of the basic linear classifier that takes

feature correlation into account by constructing the matrix (XTX)−1 and is sensitive to

unequal class distributions. We then looked at the heuristic perceptron algorithm for

linearly separable data, and the support vector machine which finds the unique de-

cision boundary with maximum margin and which can be adapted to non-separable

data. In this section we show that these techniques can be adapted to learn non-linear

decision boundaries. The main idea is simple (and was already explored in Example

1.9 on p.43): to transform the data non-linearly to a feature space in which linear clas-

sification can be applied.
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Figure 7.14. (left) Decision boundaries learned by the basic linear classifier and the perceptron

using the square of the features. (right) Data and decision boundaries in the transformed fea-

ture space.

Example 7.8 (Learning a quadratic decision boundary). The data in Figure

7.14 (left) is not linearly separable, but both classes have a clear circular shape.

Figure 7.14 (right) shows the same data with the feature values squared. In

this transformed feature space the data has become linearly separable, and the

perceptron is able to separate the classes. The resulting decision boundary in

the original space is a near-circle. Also shown is the decision boundary learned

by the basic linear classifier in the quadratic feature space, corresponding to an

ellipse in the original space.

In general, mapping points back from the feature space to the instance space

is non-trivial. E.g., in this example each class mean in feature space maps back

to four points in the original space, owing to the quadratic mapping.

It is customary to call the transformed space the feature space and the original

space the input space. The approach thus appears to be to transform the training data

to feature space and learn a model there. In order to classify new data we transform

that to feature space as well and apply the model. However, the remarkable thing is

that in many cases the feature space does not have to be explicitly constructed, as we

can perform all necessary operations in input space.

Take the perceptron algorithm in dual form, for example (Algorithm 7.2 on p.209).

The algorithm is a simple counting algorithm – the only operation that is somewhat in-

volved is testing whether example xi is correctly classified by evaluating yi
∑|D|

j=1α j y j xi ·
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x j . The key component of this calculation is the dot product xi ·x j . Assuming bivariate

examples xi =
(
xi , yi

)
and x j =

(
x j , y j

)
for notational simplicity, the dot product can be

written as xi · x j = xi x j + yi y j . The corresponding instances in the quadratic feature

space are
(
x2

i , y2
i

)
and
(
x2

j , y2
j

)
, and their dot product is

(
x2

i , y2
i

) · (x2
j , y2

j

)
= x2

i x2
j + y2

i y2
j

This is almost equal to

(xi ·x j )2 = (xi x j + yi y j )2 = (xi x j )2+ (yi y j )2+2xi x j yi y j

but not quite because of the third term of cross-products. We can capture this term by

extending the feature vector with a third feature
�

2x y . This gives the following feature

space:

φ(xi )=
(
x2

i , y2
i ,
�

2xi yi

)
φ(x j )=

(
x2

j , y2
j ,
�

2x j y j

)
φ(xi ) ·φ(x j )= x2

i x2
j + y2

i y2
j +2xi x j yi y j = (xi ·x j )2

We now define κ(xi ,x j )= (xi ·x j )2, and replace xi ·x j with κ(xi ,x j ) in the dual percep-

tron algorithm to obtain the kernel perceptron (Algorithm 7.4), which is able to learn

the kind of non-linear decision boundaries illustrated in Example 7.8.

The introduction of kernels opens up a whole range of possibilities. Clearly we can

define a polynomial kernel of any degree p as κ(xi ,x j ) = (xi · x j )p . This transforms

Algorithm 7.4: KernelPerceptron(D,κ) – perceptron training algorithm using a

kernel.

Input : labelled training data D in homogeneous coordinates;

kernel function κ.

Output : coefficients αi defining non-linear decision boundary.

1 αi ← 0 for 1≤ i ≤ |D|;
2 converged←false;

3 while converged= false do

4 converged←true;

5 for i = 1 to |D| do

6 if yi
∑|D|

j=1α j y jκ(xi ,x j )≤ 0 then

7 αi ←αi +1;

8 converged←false;

9 end

10 end

11 end
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a d-dimensional input space into a high-dimensional feature space, such that each

new feature is a product of p terms (possibly repeated). If we include a constant, say

κ(xi ,x j )= (xi ·x j +1)p , we would get all lower-order terms as well. So, for example, in

a bivariate input space and setting p = 2 the resulting feature space is

φ(x)=
(
x2, y2,

�
2x y,

�
2x,

�
2y,1
)

with linear as well as quadratic features.

But we are not restricted to polynomial kernels. An often-used kernel is the Gaus-

sian kernel, defined as

κ(xi ,x j )= exp

(
−||xi −x j ||2

2σ2

)
(7.14)

where σ is a parameter known as the bandwidth. To understand the Gaussian kernel

a bit better, notice that κ(x,x)= φ(x) ·φ(x)= ||φ(x)||2 for any kernel obeying a number

of standard properties referred to as ‘positive semi-definiteness’. In this case we have

κ(x,x) = 1, which means that all points φ(x) lie on a hypersphere around the feature

space origin – which is however of infinite dimension, so geometric considerations

don’t help us much here. It is more helpful to think of a Gaussian kernel as imposing

a Gaussian (i.e., multivariate normal, see Background 9.1 on p.267) surface on each

support vector in instance space, so that the decision boundary is defined in terms of

those Gaussian surfaces.

Kernel methods are best known in combination with support vector machines. No-

tice that the soft margin optimisation problem (Equation 7.12 on p.217) is defined in

terms of dot products between training instances and hence the ‘kernel trick’ can be

applied:

α∗1 , . . . ,α∗n = argmax
α1,...,αn

−1

2

n∑
i=1

n∑
j=1

αiα j yi y jκ(xi ,x j )+
n∑

i=1
αi

subject to 0≤αi≤C and
n∑

i=1
αi yi = 0

One thing to keep in mind is that the decision boundary learned with a non-linear

kernel cannot be represented by a simple weight vector in input space. Thus, in or-

der to classify a new example x we need to evaluate yi
∑n

j=1α j y jκ(x,x j ) which is an

O(n) computation involving all training examples, or at least the ones with non-zero

multipliers α j . This is why support vector machines are a popular choice as a kernel

method, since they naturally promote sparsity in the support vectors. Although we

have restricted attention to numerical features here, it is worth stressing that kernels

can be defined over discrete structures, including trees, graphs, and logical formulae,

and thus open the way to extending geometric models to non-numerical data.
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7.6 Linear models: Summary and further reading

After considering logical models in the previous three chapters we had a good look at

linear models in this chapter. Logical models are inherently non-numerical, and so

deal with numerical features by using thresholds to convert them into two or more

intervals. Linear models are almost diametrically opposite in that they can deal with

numerical features directly but need to pre-process non-numerical features.3 Geomet-

rically, linear models use lines and planes to build the model, which essentially means

that a certain increase or decrease in one of the features has the same effect, regardless

of that feature’s value or any of the other features. They are simple and robust to varia-

tions in the training data, but sometimes suffer from underfitting as a consequence.

� In Section 7.1 we considered the least-squares method that was originally con-

ceived to solve a regression problem. This classical method, which derives its

name from minimising the sum of squared residuals between predicted and ac-

tual function values, is described in innumerable introductory mathematics and

engineering texts (and was one of the example programs I remember running

on my father’s Texas Instruments TI-58 programmable calculator). We first had a

look at the problem in univariate form, and then derived the general solution

as ŵ = (XTX)−1XTy, where (XTX)−1 is a transformation that decorrelates, cen-

tres and normalises the features. We then discussed regularised versions of lin-

ear regression: ridge regression was introduced by Hoerl and Kennard (1970),

and the lasso which naturally leads to sparse solutions was introduced by Tib-

shirani (1996). We saw how the least-squares method could be applied to bi-

nary classification by encoding the classes by +1 and −1, leading to the solution

ŵ= (XTX)−1(Pos μ⊕ −Neg μ�). This generalises the basic linear classifier by tak-

ing feature correlation and unequal class prevalence into account, but at a con-

siderably increased computational cost (quadratic in the number of instances

and cubic in the number of features).

� Section 7.2 presented another classical linear model, the perceptron. Unlike the

least-squares method, which always finds the optimal solution in terms of sum

of squared residuals, the perceptron is a heuristic algorithm that depends, for

one thing, on the order in which the examples are presented. Invented by Rosen-

blatt (1958), its convergence for linearly separable data was proved by Novikoff

(1962), who gave an upper bound on the number of mistakes made before the

perceptron converged. Minsky and Papert (1969) proved further formal proper-

ties of the perceptron, but also demonstrated the limitations of a linear classifier.

These were overcome with the development, over an extended period of time

and with contributions from many people, of the multilayer perceptron and its

3Ways to pre-process non-numerical features for use in linear models are discussed in Chapter 10.
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back-propagation training algorithm (Rumelhart, Hinton and Williams, 1986). In

this section we also learned about the dual, instance-based view of linear clas-

sification in which we are learning instance weights rather than feature weights.

For the perceptron these weights are the number of times the example has been

misclassified during training.

� Maximum-margin classification with support vector machines was the topic of

Section 7.3. The approach was proposed by Boser, Guyon and Vapnik (1992).

Using the dual formulation, the instance weights are non-zero only for the sup-

port vectors, which are the training instances on the margin. The soft-margin

generalisation is due to Cortes and Vapnik (1995). Margin errors are allowed, but

the total margin error is added as a regularisation term to the objective function

to be minimised, weighted by the complexity parameter C ; all instances inside

the margin receive instance weight C . As we have seen, by making C sufficiently

small the support vector machine summarises the classes by their unweighted

class means and hence is very similar to the basic linear classifier. A general

introduction to SVMs is provided by Cristianini and Shawe-Taylor (2000). The

sequential minimal optimisation algorithm is an often-used solver which iter-

atively selects pairs of multipliers to optimise analytically and is due to Platt

(1998).

� In Section 7.4 we considered two methods to turn linear classifiers into proba-

bility estimators by converting the signed distance from the decision boundary

into class probabilities. One well-known method is to use the logistic function,

either straight out of the box or by fitting location and spread parameters to the

data. Although this is often presented as a simple trick, we saw how it can be

justified by assuming that the distances per class are normally distributed with

the same variance; this latter assumption is needed to make the transforma-

tion monotonic. A non-parametric alternative is to use the ROC convex hull to

obtain calibrated probability estimates. As was already mentioned in the sum-

mary of Chapter 2, the approach has its roots in isotonic regression (Best and

Chakravarti, 1990) and was introduced to the machine learning community by

Zadrozny and Elkan (2002). Fawcett and Niculescu-Mizil (2007) and Flach and

Matsubara (2007) show its equivalence to calibration by means of the ROC con-

vex hull.

� Finally, Section 7.5 discussed briefly how to go beyond linearity with kernel meth-

ods. The ‘kernel trick’ can be applied to any learning algorithm that can be en-

tirely described in terms of dot products, which includes most approaches dis-

cussed in this chapter. The beauty is that we are implicitly classifying in a high-

dimensional feature space, without having to construct the space explicitly. I
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gave the kernel perceptron as a simple example of a kernelised algorithm; in the

next chapter we will see another example. Shawe-Taylor and Cristianini (2004)

provide an excellent reference bringing together a wealth of material on the use

of kernels in machine learning, and Gärtner (2009) discusses how kernel meth-

ods can be applied to structured, non-numerical data.

�



CHAPTER 8

Distance-based models

M
ANY FORMS OF LEARNING are based on generalising from training data to unseen data

by exploiting the similarities between the two. With grouping models such as decision

trees these similarities take the form of an equivalence relation or partition of the in-

stance space: two instances are similar whenever they end up in the same segment of

this partition. In this chapter we consider learning methods that utilise more graded

forms of similarity. There are many different ways in which similarity can be measured,

and in Section 8.1 we take a look at the most important of them. Section 8.2 is devoted

to a discussion of two key concepts in distance-based machine learning: neighbours

and exemplars. In Section 8.3 we consider what is perhaps the best-known distance-

based learning method: the nearest-neighbour classifier. Section 8.4 investigates K -

means clustering and close relatives, and Section 8.5 looks at hierarchical clustering

by constructing dendrograms. Finally, in Section 8.6 we discuss how several of these

methods can be extended using the kind of kernels that we saw in the previous chapter.

8.1 So many roads. . .

It may seem odd at first that there should be many ways to measure distance. I am

not referring to the fact that distance can be measured on different scales (kilometres,

miles, nautical miles, and so on), as such changes of scale are simple monotonic trans-

231
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Figure 8.1. (left) Distance as experienced by a King on a chessboard: green squares are one

move away, orange ones two moves and red ones three moves. The shape formed by equidistant

squares from the current position is itself a square. (middle) A Rook can travel any number of

squares in one move, but only horizontally or vertically. No square is further than two moves

away. (right) The (fictional) KRook combines the restrictions of King and Rook: it can move only

one square at a time, and only horizontally or vertically. Equidistant squares now form a lozenge.

formations and do not fundamentally alter the distance measure. A better intuition is

obtained by taking the mode of travel into account. Clearly, when travelling from Bris-

tol to Amsterdam by train you travel a larger distance then when travelling by plane,

because planes are less restricted in their paths than trains. We will explore this a bit

further by considering the game of chess.

In chess, each piece is governed by a set of rules that restrict its possible moves.

These restrictions can be directional: for instance, King and Queen can move horizon-

tally, vertically and diagonally, while a Bishop can only move diagonally, a Rook only

horizontally and vertically, and pawns only upwards. King and pawn are further re-

stricted by the fact that they can move only one square at a time, whereas Queen, Rook

and Bishop can move any number of squares in a single allowed direction. Finally, a

Knight moves according to a very specific pattern (one diagonal step and one horizon-

tal or vertical step in a single move).

Although these pieces move around on the same board, they experience distances

in very different ways. For example, the next square down is one move away for King,

Queen and Rook; three moves away for a Knight; and unreachable for Bishop or pawn.

This is, of course, very similar to our experience in the real world. Trains and cars can

only move along tracks or roads, like a Bishop, which leaves remote places unreach-

able. A mountain range can mean large detours when travelling by car, train or on foot,

but is easy to cross when flying. On an underground, two stations a few streets away

may be only reachable with several changes of line, not unlike the way a Knight can

reach a nearby square only in two or three moves. And on foot we are most flexible but
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Figure 8.2. (left) The Bishop’s world: squares are either one or two moves away, or else unreach-

able. (right) The fictional Bing combines the restrictions of King and Bishop: it can only move

one square at a time, and only diagonally. Equidistant squares now form a punctuated square.

also slow, like a King.

Figure 8.1 visualises the distances experienced by King and Rook. Both can reach all

parts of the chessboard, but a Rook can travel much faster. In fact, a Rook can reach any

square in either one or two moves (assuming no other pieces are in its way). All squares

one move away form a cross, and the remaining squares are one additional move away.

A King will often have to travel more than two moves to reach a particular square (al-

though there are also squares that the King can reach in one move while a Rook needs

two). The squares one move away form a small square shape around the current posi-

tion; those two moves away form a larger square around the smaller square; and so on.

Figure 8.1 (right) shows a piece that doesn’t exist in chess, but could. It combines the

restrictions of King and Rook, and I therefore call it a KRook. Like a King, it can only

move one square at a time; and like a Rook, it can only move horizontally and vertically.

For the KRook, equidistant squares form a sort of lozenge around the current position.

Figure 8.2 (left) visualises the Bishop’s moves. The Bishop is somewhat similar to

the Rook in that some squares (those of the same colour as its current square) are never

more than two moves away; however, the remaining squares of the other colour are un-

reachable. Combining the restrictions of the Bishop (only diagonal moves) with those

of the King (one square per move) we obtain another fictional piece, the Bing (Figure

8.2 (right)). We could say that the world of Bishops and Bings is rotated 45 degrees,

compared with the world of Rooks and KRooks.

What’s the relevance of all this when trying to understand distance-based machine

learning, you may ask? Well, the rank (row) and file (column) on a chessboard is not

unlike a discrete or categorical feature in machine learning (in fact, since ranks and

files are ordered, they are �ordinal features, as we will further discuss in Chapter 10).

We can switch to real-valued features by imagining a ‘continuous’ chessboard with
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infinitely many, infinitesimally narrow ranks and files. Squares now become points,

and distances are not expressed as the number of squares travelled, but simply as a real

number on some scale. If we now look at the shapes obtained by connecting equidis-

tant points, we see that many of these carry over from the discrete to the continuous

case. For a King, for example, all points a given fixed distance away still form a square

around the current position; and for a KRook they still form a square rotated 45 de-

grees. As it happens, these are special cases of the following generic concept.

Definition 8.1 (Minkowski distance). If X = Rd , the Minkowski distance of order

p > 0 is defined as

Disp (x,y)=
(

d∑
j=1
|x j − y j |p

)1/p

= ||x−y||p

where ||z||p =
(∑d

j=1 |z j |p
)1/p

is the p-norm (sometimes denoted Lp norm) of the

vector z. We will often refer to Disp simply as the p-norm. �

So, the 2-norm refers to the familiar Euclidean distance

Dis2(x,y)=
√√√√ d∑

j=1
(x j − y j )2 =

√
(x−y)T(x−y)

which measures distance ‘as the crow flies’. Two other values of p can be related back

to the chess example. The 1-norm denotes Manhattan distance, also called cityblock

distance:

Dis1(x,y)=
d∑

j=1
|x j − y j |

This is the distance if we can only travel along coordinate axes: similar to a taxi in Man-

hattan or other cities whose streets follow a regular grid pattern, but also the distance

experienced by our fictional KRook piece. If we now let p grow larger, the distance

will be more and more dominated by the largest coordinate-wise distance, from which

we can infer that Dis∞(x,y) = max j |x j − y j |. This is the distance experienced by the

King on a chessboard, who can move diagonally as well as horizontally and vertically

but only one step at a time; it is also called Chebyshev distance. Figure 8.3 (left) visu-

alises equidistant points from the origin using Minkowski distances of various orders.

It can be seen that Euclidean distance is the only Minkowski distance that is rotation-

invariant – in other words, special significance is given to the directions of the coordi-

nate axes whenever p 
= 2. Minkowski distances do not refer to a particular choice of

origin and are therefore translation-invariant, but none of them are scaling-invariant.

You will sometimes see references to the 0-norm (or L0 norm) which counts the

number of non-zero elements in a vector. The corresponding distance then counts the
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Figure 8.3. (left) Lines connecting points at order-p Minkowski distance 1 from the origin for

(from inside) p = 0.8; p = 1 (Manhattan distance, the rotated square in red); p = 1.5; p = 2

(Euclidean distance, the violet circle); p = 4; p = 8; and p = ∞ (Chebyshev distance, the blue

rectangle). Notice that for points on the coordinate axes all distances agree. For the other points,

our reach increases with p; however, if we require a rotation-invariant distance metric then Eu-

clidean distance is our only choice. (right) The rotated ellipse xTRTS2Rx= 1/4; the axis-parallel

ellipse xTS2x= 1/4; and the circle xTx= 1/4 (R and S as in Example 8.1).

number of positions in which vectors x and y differ. This is not strictly a Minkowski

distance; however, we can define it as

Dis0(x,y)=
d∑

j=1
(x j − y j )0 =

d∑
j=1

I [x j = y j ]

under the understanding that x0 = 0 for x = 0 and 1 otherwise. This is actually the dis-

tance experienced by a Rook on the chessboard: if both rank and file are different the

square is two moves away, if only one of them is different the square is one move away.

If x and y are binary strings, this is also called the Hamming distance. Alternatively, we

can see the Hamming distance as the number of bits that need to be flipped to change

x into y; for non-binary strings of unequal length this can be generalised to the notion

of edit distance or Levenshtein distance.

Do all of these mathematical constructs make sense as a notion of distance? In

order to answer that question we can draw up a list of properties that a proper distance

measure should have, such as non-negativity and symmetry. The generally agreed-

upon list defines what is known as a metric.

Definition 8.2 (Distance metric). Given an instance space X , a distance metric is

a function Dis : X ×X →R such that for any x, y, z ∈X :

1. distances between a point and itself are zero: Dis(x, x)= 0;
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Figure 8.4. (left) The green circle connects points the same Euclidean distance (i.e., Minkowski

distance of order p = 2) away from the origin as A. The orange circle shows that B and C are

equidistant from A. The red circle demonstrates that C is closer to the origin than B, which con-

forms to the triangle inequality. (middle) With Manhattan distance (p = 1), B and C are equally

close to the origin and also equidistant from A. (right) With p < 1 (here, p = 0.8) C is further away

from the origin than B; since both are again equidistant from A, it follows that travelling from the

origin to C via A is quicker than going there directly, which violates the triangle inequality.

2. all other distances are larger than zero: if x 
= y then Dis(x, y)> 0;

3. distances are symmetric: Dis(y, x)=Dis(x, y);

4. detours can not shorten the distance: Dis(x, z)≤Dis(x, y)+Dis(y, z).

If the second condition is weakened to a non-strict inequality – i.e., Dis(x, y) may be

zero even if x 
= y – the function Dis is called a pseudo-metric. �

The last condition is called the triangle inequality (or sub-additivity, as it really con-

cerns the interaction between distance and addition). Figure 8.4 investigates this for

Minkowski distances of various orders. The triangle inequality dictates that the dis-

tance from the origin to C is no more than the sum of the distances from the origin to A

(Dis(O,A)) and from A to C (Dis(A,C)). B is at the same distance from A as C, regardless

of the distance measure used; so Dis(O,A)+Dis(A,C) is equal to the distance from the

origin to B. So, if we draw a circle around the origin through B, the triangle inequality

dictates that C not be outside that circle. As we see in the left figure for Euclidean dis-

tance, B is the only point where the circles around the origin and around A intersect,

so everywhere else the triangle inequality is a strict inequality.

The middle figure shows the same situation for Manhattan distance (p = 1). Now, B

and C are in fact equidistant from the origin, and so travelling via A to C is no longer a

detour, but just one of the many shortest routes. However, if we now decrease p further,

we see that C ends up outside the red shape, and is thus further away than B when seen

from the origin, whereas of course the sum of the distances from the origin to A and

from A to C is still equal to the distance from the origin to B. At this point, our intuition

breaks down: Minkowski distances with p < 1 are simply not very useful as distances

since they all violate the triangle inequality.
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Sometimes it is useful to use different scales for different coordinates if they are tra-

versed with different speeds. For instance, for people horizontal distances can be tra-

versed more easily than vertical differences, and consequently it is more realistic to use

an ellipse rather than a circle to identify points that can be reached in a fixed amount

of time, with the major axis of the ellipse indicating directions that can be traversed

at larger speed. The ellipse can also be rotated, so that the major axis is not aligned

with any of the coordinates: for instance, this could be the direction of a motorway,

or the wind direction. Mathematically, while hyper-spheres (circles in d ≥ 2 dimen-

sions) of radius r can be defined by the equation xTx = r 2, hyper-ellipses are defined

by xTMx= r 2, where M is a matrix describing the appropriate rotation and scaling.

Example 8.1 (Elliptical distance). Consider the following matrices

R=
(

1/
�

2 1/
�

2

−1/
�

2 1/
�

2

)
S=
(

1/2 0

0 1

)
M=
(

5/8 −3/8

−3/8 5/8

)

The matrix R describes a clockwise rotation of 45 degrees, and the diagonal ma-

trix S scales the x-axis by a factor 1/2. The equation

(SRx)T(SRx)= xTRTSTSRx= xTRTS2Rx= xTMx= 1/4

describes a shape which, after clockwise rotation of 45 degrees and scaling of the

x-axis by a factor 1/2, is a circle with radius 1/2 – i.e., the ‘ascending’ ellipse in

Figure 8.3 (right). The ellipse equation is (5/8)x2+ (5/8)y2− (3/4)x y = 1/2.

Often, the shape of the ellipse is estimated from data as the inverse of the covari-

ance matrix: M=Σ−1. This leads to the definition of the Mahalanobis distance

DisM (x,y|Σ)=
√

(x−y)TΣ−1(x−y) (8.1)

Using the covariance matrix in this way has the effect of decorrelating and normalising

the features, as we saw in Section 7.1. Clearly, Euclidean distance is a special case

of Mahalanobis distance with the identity matrix I as covariance matrix: Dis2(x,y) =
DisM (x,y|I).

8.2 Neighbours and exemplars

Now that we understand the basics of measuring distance in instance space, we pro-

ceed to consider the key ideas underlying distance-based models. The two most
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important of these are: formulating the model in terms of a number of prototypical

instances or exemplars, and defining the decision rule in terms of the nearest exem-

plars or neighbours. We can understand these concepts by revisiting our old friend, the

basic linear classifier. This classifier uses the two class means μ⊕ and μ� as exemplars,

as a summary of all we need to know about the training data in order to build the clas-

sifier. A fundamental property of the mean of a set of vectors is that it minimises the

sum of squared Euclidean distances to those vectors.

Theorem 8.1 (The arithmetic mean minimises squared Euclidean distance). The

arithmetic mean μ of a set of data points D in a Euclidean space is the unique point

that minimises the sum of squared Euclidean distances to those data points.

Proof. We will show that argminy
∑

x∈D ||x−y||2 =μ, where ||·|| denotes the 2-norm.

We find this minimum by taking the gradient (the vector of partial derivatives with

respect to yi ) of the sum and setting it to the zero vector:

∇y
∑

x∈D
||x−y||2 =−2

∑
x∈D

(
x−y
)=−2

∑
x∈D

x+2|D|y= 0

from which we derive y= 1
|D|
∑

x∈D x=μ. �

Notice that minimising the sum of squared Euclidean distances of a given set of

points is the same as minimising the average squared Euclidean distance. You may

wonder what happens if we drop the square here: wouldn’t it be more natural to take

the point that minimises total Euclidean distance as exemplar? This point is known

as the geometric median, as for univariate data it corresponds to the median or ‘mid-

dle value’ of a set of numbers. However, for multivariate data there is no closed-form

expression for the geometric median, which needs to be calculated by successive ap-

proximation. This computational advantage is the main reason why distance-based

methods tend to use squared Euclidean distance.

In certain situations it makes sense to restrict an exemplar to be one of the given

data points. In that case, we speak of a medoid, to distinguish it from a centroid which

is an exemplar that doesn’t have to occur in the data. Finding a medoid requires us

to calculate, for each data point, the total distance to all other data points, in order

to choose the point that minimises it. Regardless of the distance metric used, this is

an O(n2) operation for n points, so for medoids there is no compuational reason to

prefer one distance metric over another. Figure 8.5 shows a set of 10 data points where

the different ways of determining exemplars all give different results. In particular, the

mean and squared 2-norm medoid can be overly sensitive to outliers.

Once we have determined the exemplars, the basic linear classifier constructs the

decision boundary as the perpendicular bisector of the line segment connecting the

two exemplars. An alternative, distance-based way to classify instances without direct
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Figure 8.5. A small data set of 10 points, with circles indicating centroids and squares indicating

medoids (the latter must be data points), for different distance metrics. Notice how the outlier on

the bottom-right ‘pulls’ the mean away from the geometric median; as a result the corresponding

medoid changes as well.

reference to a decision boundary is by the following decision rule: if x is nearest to μ⊕

then classify it as positive, otherwise as negative; or equivalently, classify an instance

to the class of the nearest exemplar. If we use Euclidean distance as our closeness mea-

sure, simple geometry tells us we get exactly the same decision boundary (Figure 8.6

(left)).

So the basic linear classifier can be interpreted from a distance-based perspective

as constructing exemplars that minimise squared Euclidean distance within each class,

and then applying a nearest-exemplar decision rule. This change of perspective opens

up many new possibilities. For example, we can investigate what the decision bound-

ary looks like if we use Manhattan distance for the decision rule (Figure 8.6 (right)). It

turns out that the decision boundary can only run along a number of fixed angles: in

two dimensions these are horizontal, vertical and at (plus or minus) 45 degrees. This

can be understood as follows. Suppose the two exemplars have different x- and y-

coordinates, then they span a rectangle (I’ll assume a tall rectangle, as in the figure).

Imagine yourself in the centre of that rectangle, then clearly you are at equal distances

from both exemplars (in fact, that same point is part of the 2-norm decision bound-

ary). Now, imagine that you move one horizontal step, then you will move closer to

one exemplar and away from the other; in order to compensate for that, you will also

need to make a vertical step. So, within the rectangle, you maintain equal distance
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Figure 8.6. (left) For two exemplars the nearest-exemplar decision rule with Euclidean distance

results in a linear decision boundary coinciding with the perpendicular bisector of the line con-

necting the two exemplars. The crosses denote different locations on the decision boundary, and

the circles centred at those locations demonstrate that the exemplars are equidistant from each

of them. When travelling along the decision boundary from bottom-left to top-right, these cir-

cles first shrink then grow again after passing the location halfway between the two exemplars.

(right) Using Manhattan distance the circles are replaced by diamonds. Travelling from left to

right, the diamonds shrink along the left-most horizontal segment of the decision boundary,

then stay the same size along the 45-degree segment, and then grow again along the right-most

horizontal segment.

Figure 8.7. (left) Decision regions defined by the 2-norm nearest-exemplar decision rule for

three exemplars. (right) With Manhattan distance the decision regions become non-convex.

from the exemplars by moving at a 45 degree angle. Once you reach the perimeter of

the rectangle you will walk away from both exemplars by making horizontal steps, so

from there the decision boundary runs horizontally.
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Figure 8.8. (left) Voronoi tesselation for five exemplars. (middle) Taking the two nearest ex-

emplars into account leads to a further subdivision of each Voronoi cell. (right) The shading

indicates which exemplars contribute to which cell.

Another useful consequence of switching to the distance-based perspective is that

the nearest-exemplar decision rule works equally well for more than two exemplars,

which gives us a multi-class version of the basic linear classifier.1 Figure 8.7 (left) illus-

trates this for three exemplars. Each decision region is now bounded by two line seg-

ments. As you would expect, the 2-norm decision boundaries are more regular than

the 1-norm ones: mathematicians say that the 2-norm decision regions are convex,

which means that linear interpolation between any two points in the region can never

go outside it. Clearly, this doesn’t hold for 1-norm decision regions (Figure 8.7 (right)).

Increasing the number of exemplars further means that some of the regions be-

come closed convex ‘cells’ (we are assuming Euclidean distance for the remainder of

this section), giving rise to what is known as a Voronoi tesselation. Since the number of

classes is typically much lower than the number of exemplars, decision rules often take

more than one nearest exemplar into account. This increases the number of decision

regions further.

Example 8.2 (Two neighbours know more than one). Figure 8.8 (left) gives a

Voronoi tesselation for five exemplars. Each line segment is part of the perpen-

dicular bisector of two exemplars. There are
(5

2

)= 10 pairs of exemplars, but two

of these pairs are too far away from each other so we observe only eight line seg-

ments in the Voronoi tesselation.

If we now also take the second-nearest exemplars into account, each Voronoi

cell is further subdivided: for instance, since the central point has four neigh-

bours, the central cell is divided into four subregions (Figure 8.8 (middle)). You

can think of those additional line segments as being part of the Voronoi tessela-

1In information retrieval this is often called the Rocchio classifier.
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tion that results when the central point is removed. The other exemplars have

only three immediate neighbours and so their cells are divided into three subre-

gions. We thus obtain 16 ‘2-nearest exemplar’ decision regions, each of which is

defined by a different pair of nearest and second-nearest exemplars.

Figure 8.8 (right) shades each of these regions according to the two near-

est exemplars spanning it. Notice that we gave each of the two exemplars the

same weight, and so there are pairs of adjacent regions (across each of the orig-

inal Voronoi boundaries) receiving the same shading, resulting in eight different

shadings in all. This will be relevant later on, when we discuss the refinement of

nearest-neighbour classifiers.

To summarise, the main ingredients of distance-based models are

� distance metrics, which can be Euclidean, Manhattan, Minkowski or Mahalanobis,

among many others;

� exemplars: centroids that find a centre of mass according to a chosen distance

metric, or medoids that find the most centrally located data point; and

� distance-based decision rules, which take a vote among the k nearest exemplars.

In the next sections these ingredients are combined in various ways to obtain super-

vised and unsupervised learning algorithms.

8.3 Nearest-neighbour classification

In the previous section we saw how to generalise the basic linear classifier to more than

two classes, by learning an exemplar for each class and using the nearest-exemplar

decision rule to classify new data. In fact, the most commonly used distance-based

classifier is even more straightforward than that: it simply uses each training instance

as an exemplar. Consequently, ‘training’ this classifier requires nothing more than

memorising the training data. This extremely simple classifier is known as the nearest-

neighbour classifier. Its decision regions are made up of the cells of a Voronoi tessela-

tion, with piecewise linear decision boundaries selected from the Voronoi boundaries

(since adjacent cells may be labelled with the same class).

What are the properties of the nearest-neighbour classifier? First, notice that, un-

less the training set contains identical instances from different classes, we will be able

to separate the classes perfectly on the training set – not really a surprise, as we memo-

rised all training examples! Furthermore, by choosing the right exemplars we can more

or less represent any decision boundary, or at least an arbitrarily close piecewise linear



8.3 Nearest-neighbour classification 243

approximation. It follows that the nearest-neighbour classifier has low bias, but also

high variance: move any of the exemplars spanning part of the decision boundary, and

you will also change the boundary. This suggests a risk of overfitting if the training data

is limited, noisy or unrepresentative.

From an algorithmic point of view, training the nearest-neighbour classifier is very

fast, taking only O(n) time for storing n exemplars. The downside is that classifying

a single instance also takes O(n) time, as the instance will need to be compared with

every exemplar to determine which one is the nearest. It is possible to reduce clas-

sification time at the expense of increased training time by storing the exemplars in

a more elaborate data structure, but this tends not to scale well to large numbers of

features.

In fact, high-dimensional instance spaces can be problematic for another reason:

the infamous curse of dimensionality. High-dimensional spaces tend to be extremely

sparse, which means that every point is far away from virtually every other point, and

hence pairwise distances tend to be uninformative. However, whether or not you are

hit by the curse of dimensionality is not simply a matter of counting the number of

features, as there are several reasons why the effective dimensionality of the instance

space may be much smaller than the number of features. For example, some of the

features may be irrelevant and drown out the relevant features’ signal in the distance

calculations. In such a case it would be a good idea, before building a distance-based

model, to reduce dimensionality by performing �feature selection, as will be discussed

in Chapter 10. Alternatively, the data may live on a manifold of lower dimension than

the instance space (e.g., the surface of a sphere is a two-dimensional manifold wrapped

around a three-dimensional object), which allows other dimensionality-reduction tech-

niques such as �principal component analysis, which will be explained in the same

chapter. In any case, before applying nearest-neighbour classification it is a good idea

to plot a histogram of pairwise distances of a sample to see if they are sufficiently var-

ied.

Notice that the nearest-neighbour method can easily be applied to regression prob-

lems with a real-valued target variable. In fact, the method is completely oblivious

to the type of target variable and can be used to output text documents, images and

videos. It is also possible to output the exemplar itself instead of a separate target, in

which case we usually speak of nearest-neighbour retrieval. Of course we can only out-

put targets (or exemplars) stored in the exemplar database, but if we have a way of ag-

gregating these we can go beyond this restriction by applying the k-nearest neighbour

method. In its simplest form, the k-nearest neighbour classifier takes a vote between

the k ≥ 1 nearest exemplars of the instance to be classified, and predicts the majority

class. We can easily turn this into a probability estimator by returning the normalised

class counts as a probability distribution over classes.
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Figure 8.9. (left) Decision regions of a 3-nearest neighbour classifier; the shading represents the

predicted probability distribution over the five classes. (middle) 5-nearest neighbour. (right)

7-nearest neighbour.

Figure 8.9 illustrates this on a small data set of 20 exemplars from five different

classes, for k = 3,5,7. The class distribution is visualised by assigning each test point

the class of a uniformly sampled neighbour: so, in a region where two of k = 3 neigh-

bours are red and one is orange, the shading is a mix of two-thirds red and one-third

orange. While for k = 3 the decision regions are still mostly discernible, this is much

less so for k = 5 and k = 7. This may seem at odds with our earlier demonstration of the

increase in the number of decision regions with increasing k in Example 8.2. However,

this increase is countered by the fact that the probability vectors become more similar

to each other. To take an extreme example: if k is equal to the number of exemplars

n, every test instance will have the same number of neighbours and will receive the

same probability vector which is equal to the prior distribution over the exemplars. If

k = n−1 we can reduce one of the class counts by 1, which can be done in c ways: the

same number of possibilities as with k = 1!

We conclude that the refinement of k-nearest neighbour – the number of different

predictions it can make – initially increases with increasing k, then decreases again.

Furthermore, we can say that the bias increases and the variance decreases with in-

creasing k. There is no easy recipe to decide what value of k is appropriate for a given

data set. However, it is possible to sidestep this question to some extent by applying

distance weighting to the votes: that is, the closer an exemplar is to the instance to

be classified, the more its vote counts. Figure 8.10 demonstrates this, using the re-

ciprocal of the distance to an exemplar as the weight of its vote. This blurs the deci-

sion boundaries, as the model now applies a combination of grouping by means of the

Voronoi boundaries, and grading by means of distance weighting. Furthermore, since

the weights decrease quickly for larger distances, the effect of increasing k is much

smaller than with unweighted voting. In fact, with distance weighting we can simply

put k = n and still obtain a model that makes different predictions in different parts of

the instance space. One could say that distance weighting makes k-nearest neighbour
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Figure 8.10. (left) 3-nearest neighbour with distance weighting on the data from Figure 8.9.

(middle) 5-nearest neighbour. (right) 7-nearest neighbour.

more of a global model, while without it (and for small k) it is more like an aggregation

of local models.

If k-nearest neighbour is used for regression problems, the obvious way to aggre-

gate the predictions from the k neighbours is by taking the mean value, which can

again be distance-weighted. This would lend the model additional predictive power

by predicting values that aren’t observed among the stored exemplars. More generally,

we can apply k-means to any learning problem where we have an appropriate ‘aggre-

gator’ for multiple target values.

8.4 Distance-based clustering

In a distance-based context, unsupervised learning is usually taken to refer to cluster-

ing, and we will now review a number of distance-based clustering methods. The ones

considered in this section are all exemplar-based and hence predictive: they naturally

generalise to unseen instances (see Section 3.3 for the distinction between predictive

and descriptive clustering). In the next section we consider a clustering method that is

not exemplar-based and hence descriptive.

Predictive distance-based clustering methods use the same ingredients as distance-

based classifiers: a distance metric, a way to construct exemplars and a distance-based

decision rule. In the absence of an explicit target variable, the assumption is that the

distance metric indirectly encodes the learning target, so that we aim to find clusters

that are compact with respect to the distance metric. This requires a notion of cluster

compactness that can serve as our optimisation criterion. To that end, we refer back to

the scatter matrix introduced in Background 7.2 on p.200.

Definition 8.3 (Scatter). Given a data matrix X, the scatter matrix is the matrix

S= (X−1μ
)T (X−1μ

)= n∑
i=1

(
Xi · −μ

)T (Xi · −μ
)
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whereμ is a row vector containing all column means of X. The scatter of X is defined

as Scat(X)=∑n
i=1 ||Xi · −μ||2, which is equal to the trace of the scatter matrix (i.e., the

sum of its diagonal elements). �

Imagine now that we partition D into K subsets D1�. . .�DK =D , and letμ j denote

the mean of D j . Let S be the scatter matrix of D , and S j be the scatter matrices of D j .

These scatter matrices then have the following relationship:

S=
K∑

j=1
S j +B (8.2)

Here, B is the scatter matrix that results by replacing each point in D with the corre-

sponding μ j . Each S j is called a within-cluster scatter matrix and describes the com-

pactness of the j -th cluster. B is the between-cluster scatter matrix and describes the

spread of the cluster centroids. It follows that the traces of these matrices can be de-

composed similarly, which gives

Scat(D)=
K∑

j=1
Scat(D j )+

K∑
j=1
|D j | ||μ j −μ||2 (8.3)

What this tells us is that minimising the total scatter over all clusters is equivalent to

maximising the (weighted) scatter of the centroids. The K -means problem is to find a

partition that minimises the total within-cluster scatter.

Example 8.3 (Reducing scatter by partitioning data). Consider the following

five points: (0,3), (3,3), (3,0), (−2,−4) and (−4,−2). These points are, conve-

niently, centred around (0,0). The scatter matrix is

S=
(

0 3 3 −2 −4

3 3 0 −4 −2

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 3

3 3

3 0

−2 −4

−4 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=
(

38 25

25 38

)

with trace Scat(D) = 76. If we cluster the first two points together in one cluster

and the remaining three in another, then we obtain cluster means μ1 = (1.5,3)

and μ2 = (−1,−2) and within-cluster scatter matrices

S1 =
(

0−1.5 3−1.5

3−3 3−3

)(
0−1.5 3−3

3−1.5 3−3

)
=
(

4.5 0

0 0

)

S2 =
(

3− (−1) −2− (−1) −4− (−1)

0− (−2) −4− (−2) −2− (−2)

)⎛⎜⎝
3− (−1) 0− (−2)

−2− (−1) −4− (−2)

−4− (−1) −2− (−2)

⎞
⎟⎠=
(

26 10

10 8

)
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with traces Scat(D1) = 4.5 and Scat(D2) = 34. Two copies of μ1 and three copies

of μ2 have, by definition, the same centre of gravity as the complete data set:

(0,0) in this case. We thus calculate the between-cluster scatter matrix as

B=
(

1.5 1.5 −1 −1 −1

3 3 −2 −2 −2

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1.5 3

1.5 3

−1 −2

−1 −2

−1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=
(

7.5 15

15 30

)

with trace 37.5.

Alternatively, if we treat the first three points as a cluster and put the other two

in a second cluster, then we obtain cluster means μ′1 = (2,2) and μ′2 = (−3,−3),

and within-cluster scatter matrices

S′1 =
(

0−2 3−2 3−2

3−2 3−2 0−2

)⎛⎜⎝
0−2 3−2

3−2 3−2

3−2 0−2

⎞
⎟⎠=
(

6 −3

−3 6

)

S′2 =
(
−2− (−3) −4− (−3)

−4− (−3) −2− (−3)

)(
−2− (−3) −4− (−3)

−4− (−3) −2− (−3)

)
=
(

2 −2

−2 2

)

with traces Scat(D ′
1)= 12 and Scat(D ′

2)= 4. The between-cluster scatter matrix is

B′ =
(

2 2 2 −3 −3

2 2 2 −3 −3

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 2

2 2

2 2

−3 −3

−3 −3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=
(

30 30

30 30

)

with trace 60. Clearly, the second clustering produces tighter clusters whose cen-

troids are further apart.

K -means algorithm

The K -means problem is NP-complete, which means that there is no efficient solution

to find the global minimum and we need to resort to a heuristic algorithm. The best-

known algorithm is usually also called K -means, although the name ‘Lloyd’s algorithm’

is also used. The outline of the algorithm is given in Algorithm 8.1. The algorithm

iterates between partitioning the data using the nearest-centroid decision rule, and
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Figure 8.11. (left) First iteration of 3-means on Gaussian mixture data. The dotted lines are

the Voronoi boundaries resulting from randomly initialised centroids; the violet solid lines are

the result of the recalculated means. (middle) Second iteration, taking the previous partition as

starting point (dotted line). (right) Third iteration with stable clustering.

recalculating centroids from a partition. Figure 8.11 demonstrates the algorithm on a

small data set with three clusters, and Example 8.4 gives the result on our example data

set describing properties of different machine learning methods.

Example 8.4 (Clustering MLM data). Refer back to the MLM data set in Table

1.4 on p.39 (it is also helpful to look at its two-dimensional approximation in

Figure 1.7 on p.37). When we run K -means on this data with K = 3, we obtain

the clusters {Associations,Trees,Rules}, {GMM,naive Bayes}, and a larger clus-

ter with the remaining data points. When we run it with K = 4, we get that

the large cluster splits into two: {kNN,Linear Classifier,Linear Regression} and

Algorithm 8.1: KMeans(D,K ) – K -means clustering using Euclidean distance

Dis2.

Input : data D ⊆Rd ; number of clusters K ∈N.

Output : K cluster means μ1, . . . ,μK ∈Rd .

1 randomly initialise K vectors μ1, . . . ,μK ∈Rd ;

2 repeat

3 assign each x ∈D to argmin j Dis2(x,μ j );

4 for j = 1 to K do

5 D j ← {x ∈D|x assigned to cluster j };

6 μ j = 1
|D j |
∑

x∈D j
x;

7 end

8 until no change in μ1, . . . ,μK ;

9 return μ1, . . . ,μK ;
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Figure 8.12. (left) First iteration of 3-means on the same data as Figure 8.11 with differently

initialised centroids. (right) 3-means has converged to a sub-optimal clustering.

{Kmeans,Logistic Regression,SVM}; but also that GMM gets reallocated to the

latter cluster, and naive Bayes ends up as a singleton.

It can be shown that one iteration of K -means can never increase the within-cluster

scatter, from which it follows that the algorithm will reach a stationary point: a point

where no further improvement is possible. It is worth noting that even the simplest

data set will have many stationary points.

Example 8.5 (Stationary points in clustering). Consider the task of dividing

the set of numbers {8,44,50,58,84} into two clusters. There are four pos-

sible partitions that 2-means can find: {8}, {44,50,58,84}; {8,44}, {50,58,84};

{8,44,50}, {58,84}; and {8,44,50,58}, {84}. It is easy to verify that each of these

establishes a stationary point for 2-means, and hence will be found with a suit-

able initialisation. Only the first clustering is optimal; i.e., it minimises the total

within-cluster scatter.

In general, while K -means converges to a stationary point in finite time, no guaran-

tees can be given about whether the convergence point is in fact the global minimum,

or if not, how far we are from it. Figure 8.12 shows how an unfortunate initialisation of

the centroids can lead to a sub-optimal solution. In practice it is advisable to run the

algorithm a number of times and select the solution with the smallest within-cluster

scatter.
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Clustering around medoids

It is straightforward to adapt the K -means algorithm to use a different distance metric;

note that this will also change the objective function being minimised. Algorithm 8.2

gives the K -medoids algorithm, which additionally requires the exemplars to be data

points. Notice that calculating the medoid of a cluster requires examining all pairs of

points – whereas calculating the mean requires just a single pass through the points

– which can be prohibitive for large data sets. Algorithm 8.3 gives an alternative al-

gorithm called partitioning around medoids (PAM) that tries to improve a clustering

locally by swapping medoids with other data points. The quality of a clustering Q is

calculated as the total distance over all points to their nearest medoid. Notice that

there are k(n−k) pairs of one medoid and one non-medoid, and evaluating Q requires

iterating over n−k data points, so the computational cost of one iteration is quadratic

in the number of data points. For large data sets one can run PAM on a small sample

but evaluate Q on the whole data set, and repeat this a number of times for different

samples.

An important limitation of the clustering methods discussed in this section is that

they represent clusters only by means of exemplars. This disregards the shape of the

clusters, and sometimes leads to counter-intuitive results. The two data sets in Fig-

ure 8.13 are identical, except for a rescaling of the y-axis. Nevertheless, K -means finds

entirely different clusterings. This is not actually a shortcoming of the K -means algo-

rithm as such, as in Figure 8.13 (right) the two centroids are further away than in the

intended solution, and hence this represents a better solution in terms of Equation

Algorithm 8.2: KMedoids(D,K ,Dis) – K -medoids clustering using arbitrary dis-

tance metric Dis.

Input : data D ⊆X ; number of clusters K ∈N;

distance metric Dis : X ×X →R.

Output : K medoids μ1, . . . ,μK ∈D , representing a predictive clustering of X .

1 randomly pick K data points μ1, . . . ,μK ∈D ;

2 repeat

3 assign each x ∈D to argmin j Dis(x,μ j );

4 for j = 1 to k do

5 D j ← {x ∈D|x assigned to cluster j };

6 μ j = argminx∈D j

∑
x′∈D j

Dis(x,x′);

7 end

8 until no change in μ1, . . . ,μK ;

9 return μ1, . . . ,μK ;
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Figure 8.13. (left) On this data 2-means detects the right clusters. (right) After rescaling the

y-axis, this configuration has a higher between-cluster scatter than the intended one.

8.3. The real issue is that in this case we want to estimate the ‘shape’ of the clusters as

well as the cluster centroids, and hence take account of more than just the trace of the

scatter matrices. We will discuss this further in the next chapter.

Algorithm 8.3: PAM(D,K ,Dis) – Partitioning around medoids clustering using ar-

bitrary distance metric Dis.

Input : data D ⊆X ; number of clusters K ∈N;

distance metric Dis : X ×X →R.

Output : K medoids μ1, . . . ,μK ∈D , representing a predictive clustering of X .

1 randomly pick K data points μ1, . . . ,μK ∈D ;

2 repeat

3 assign each x ∈D to argmin j Dis(x,μ j );

4 for j = 1 to k do

5 D j ← {x ∈D|x assigned to cluster j };

6 end

7 Q ←∑ j
∑

x∈D j
Dis(x,μ j );

8 for each medoid m and each non-medoid o do

9 calculate the improvement in Q resulting from swapping m with o;

10 end

11 select the pair with maximum improvement and swap;

12 until no further improvement possible;

13 return μ1, . . . ,μK ;
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Figure 8.14. (left) Silhouette for the clustering in Figure 8.13 (left), using squared Euclidean

distance. Almost all points have a high s(x), which means that they are much closer, on average,

to the other members of their cluster than to the members of the neighbouring cluster. (right)

The silhouette for the clustering in Figure 8.13 (right) is much less convincing.

Silhouettes

How could we detect the poor quality of the clustering in Figure 8.13 (right)? An inter-

esting technique is the use of silhouettes. For any data point xi , let d(xi ,D j ) denote the

average distance of xi to the data points in cluster D j , and let j (i ) denote the index of

the cluster that xi belongs to. Furthermore, let a(xi ) = d(xi ,D j (i )) be the average dis-

tance of xi to the points in its own cluster D j (i ), and let b(xi ) = mink 
= j (i ) d(xi ,Dk ) be

the average distance to the points in its neighbouring cluster. We would expect a(xi ) to

be considerably smaller than b(xi ), but this cannot be guaranteed. So we can take the

difference b(xi )−a(xi ) as an indication of how ‘well-clustered’ xi is, and divide this by

b(xi ) to obtain a number less than or equal to 1.

It is, however, conceivable that a(xi ) > b(xi ), in which case the difference b(xi )−
a(xi ) is negative. This describes the situation that, on average, the members of the

neighbouring cluster are closer to xi than the members of its own cluster. In order

to get a normalised value we divide by a(xi ) in this case. This leads to the following

definition:

s(xi )= b(xi )−a(xi )

max(a(xi ),b(xi ))
(8.4)

A silhouette then sorts and plots s(x) for each instance, grouped by cluster. Examples

are shown in Figure 8.14 for the two clusterings in Figure 8.13. In this particular case

we have used squared Euclidean distance in the construction of the silhouette, but

the method can be applied to other distance metrics. We can clearly see that the first

clustering is much better than the second. In addition to the graphical representation,

we can compute average silhouette values per cluster and over the whole data set.
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Figure 8.15. A dendrogram (printed left to right to improve readability) constructed by hier-

archical clustering from the data in Table 1.4 on p.39.

8.5 Hierarchical clustering

The clustering methods discussed in the previous section use exemplars to represent

a predictive clustering: a partition of the entire instance space. In this section we

take a look at methods that represent clusters using trees. We previously encountered

�clustering trees in Section 5.3: those trees use features to navigate the instance space,

similar to decision trees, and aren’t distance-based as such. Here we consider trees

called dendrograms, which are purely defined in terms of a distance measure. Because

dendrograms use features only indirectly, as the basis on which the distance measure

is calculated, they partition the given data rather than the entire instance space, and

hence represent a descriptive clustering rather than a predictive one.

Example 8.6 (Hierarchical clustering of MLM data). We continue Example 8.4

on p.248. A hierarchical clustering of the MLM data is given in Figure 8.15.

The tree shows that the three logical methods at the top form a strong clus-

ter. If we wanted three clusters, we get the logical cluster, a second small

cluster {GMM,naive Bayes}, and the remainder. If we wanted four clusters,

we would separate GMM and naive Bayes, as the tree indicates this cluster is

the least tight of the three (notice that this is slightly different from the so-

lution found by 4-means). If we wanted five clusters, we would construct

{Linear Regression,LinearClassifier} as a separate cluster. This illustrates the key
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advantage of hierarchical clustering: it doesn’t require fixing the number of clus-

ters in advance.

A precise definition of a dendrogram is as follows.

Definition 8.4 (Dendrogram). Given a data set D, a dendrogram is a binary tree

with the elements of D at its leaves. An internal node of the tree represents the subset

of elements in the leaves of the subtree rooted at that node. The level of a node is

the distance between the two clusters represented by the children of the node. Leaves

have level 0. �

For this definition to work, we need a way to measure how close two clusters are. You

might think that this is straightforward: just calculate the distance between the two

cluster means. However, this occasionally leads to problems, as discussed later in this

section. Furthermore, taking cluster means as exemplars assumes Euclidean distance,

and we may want to use one of the other distance metrics discussed earlier. This has

led to the introduction of the so-called linkage function, which is a general way to turn

pairwise point distances into pairwise cluster distances.

Definition 8.5 (Linkage function). A linkage function L : 2X × 2X → R calculates

the distance between arbitrary subsets of the instance space, given a distance metric

Dis : X ×X →R. �

The most common linkage functions are as follows:

Single linkage defines the distance between two clusters as the smallest pairwise

distance between elements from each cluster.

Complete linkage defines the distance between two clusters as the largest pointwise

distance.

Average linkage defines the cluster distance as the average pointwise distance.

Centroid linkage defines the cluster distance as the point distance between the clus-

ter means.

These linkage functions can be defined mathematically as follows:

Lsingle(A,B)= min
x∈A,y∈B

Dis(x, y)

Lcomplete(A,B)= max
x∈A,y∈B

Dis(x, y)

Laverage(A,B)=
∑

x∈A,y∈B Dis(x, y)

|A| · |B |
Lcentroid(A,B)=Dis

(∑
x∈A x

|A| ,

∑
y∈B y

|B |
)
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Clearly, all these linkage functions coincide for singleton clusters: L({x}, {y})=Dis(x, y).

However, for larger clusters they start to diverge. For example, suppose Dis(x, y) <
Dis(x, z), then the linkage between {x} and {y, z} is different in all four cases:

Lsingle({x}, {y, z})=Dis(x, y)

Lcomplete({x}, {y, z})=Dis(x, z)

Laverage({x}, {y, z})= (Dis(x, y)+Dis(x, z)
)

/2

Lcentroid({x}, {y, z})=Dis(x, (y + z)/2)

The general algorithm to build a dendrogram is given in Algorithm 8.4. The tree is

built from the data points upwards and is hence a bottom–up or agglomerative algo-

rithm. At each iteration the algorithm constructs a new partition of the data by merg-

ing the two nearest clusters together. In general, the HAC algorithm gives different

results when different linkage functions are used. Single linkage is the easiest case to

understand, as it effectively builds a graph by adding increasingly longer links between

points, one at a time, such that ultimately there is a path between any pair of points

(hence the term ‘linkage’). At any point during this process, the connected compo-

nents are the clusters found at that iteration, and the linkage of the most recently found

cluster is the length of the most recently added link. Hierarchical clustering using sin-

gle linkage can essentially be done by calculating and sorting all pairwise distances

between data points, which requires O(n2) time for n points. The other linkage func-

tions require at least O(n2 logn). Notice that the unoptimised algorithm in Algorithm

8.4 has time complexity O(n3).

Algorithm 8.4: HAC(D,L) – Hierarchical agglomerative clustering.

Input : data D ⊆X ; linkage function L : 2X ×2X →R defined in terms of

distance metric.

Output : a dendrogram representing a descriptive clustering of D .

1 initialise clusters to singleton data points;

2 create a leaf at level 0 for every singleton cluster;

3 repeat

4 find the pair of clusters X ,Y with lowest linkage l , and merge;

5 create a parent of X ,Y at level l ;

6 until all data points are in one cluster;

7 return the constructed binary tree with linkage levels;
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Figure 8.16. (left) Complete linkage defines cluster distance as the largest pairwise distance

between elements from each cluster, indicated by the coloured lines between data points. The

clustering found can be represented as nested partitions (bottom) or a dendrogram (top); the

level of a horizontal connection between clusters in the dendrogram corresponds to the length

of a linkage line. The example assumes that ties are broken by small irregularities in the grid.

(middle) Centroid linkage defines the distance between clusters as the distance between their

means. Notice that E obtains the same linkage as A and B, and so the latter clusters effectively

disappear. (right) Single linkage defines the distance between clusters as the smallest pairwise

distance. The dendrogram all but collapses, which means that no meaningful clusters are found

in the given grid configuration.

Example 8.7 (Linkage matters). We consider a regular grid of 8 points in two

rows of four (Figure 8.16). We assume that ties are broken by small irregulari-

ties. Each linkage function merges the same clusters in the same order, but the

linkages are quite different in each case. Complete linkage gives the impression

that D is far removed from the rest, whereas by moving D very slightly to the

right it would have been added to E before C. With centroid linkage we see that E

has in fact the same linkage as A and B, which means that A and B are not really

discernible as separate clusters, even though they are found first. Single link-

age seems preferable in this case, as it most clearly demonstrates that there is no

meaningful cluster structure in this set of points.

Single and complete linkage both define the distance between clusters in terms of

a particular pair of points. Consequently, they cannot take the shape of the cluster

into account, which is why average and centroid linkage can offer an advantage. How-

ever, centroid linkage can lead to non-intuitive dendrograms, as illustrated in Figure
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Figure 8.17. (left) Points 1 and 2 are closer to each other than to point 3. However, the distance

between point 3 to the centroid of the other two points is less than any of the pairwise distances.

(right) This results in a decrease in linkage when adding point 3 to cluster {1,2}, and hence a

non-monotonic dendrogram.

8.17. The issue here is that we have L({1}, {2})< L({1}, {3}) and L({1}, {2})< L({2}, {3}) but

L({1}, {2}) > L({1,2}, {3}). The first two inequalities mean that 1 and 2 are the first to be

merged into a cluster; but the second inequality means that the level of cluster {1,2,3}

in the dendrogram drops below the level of {1,2}. Centroid linkage violates the require-

ment of monotonicity, which stipulates that L(A,B)< L(A,C ) and L(A,B)< L(B ,C ) im-

plies L(A,B)< L(A∪B ,C ) for any clusters A, B and C . The other three linkage functions

are monotonic (the example also serves as an illustration why average linkage and cen-

troid linkage are not the same).

Another thing to keep in mind when constructing dendrograms is that the hier-

archical clustering method is deterministic and will always construct a clustering. Con-

sider Figure 8.18, which shows a data set of 20 uniformly randomly sampled points.

One would be hard-pressed to find any cluster structure in this data; yet a dendro-

gram constructed with complete linkage and Euclidean distance appears to indicate

that there are three or four clearly discernible clusters. But if we look closer, we see

that the linkage levels are very close together in the bottom of the tree, and the fact

that linkages are higher towards the top comes primarily from the use of complete link-

age, which concentrates on maximal pairwise distances. The silhouette in Figure 8.18

(right) confirms that the cluster structure is not very strong. Effectively, we are witness-

ing here a particular, clustering-related kind of overfitting, already familiar from other

tree-based models discussed in Chapter 5. Furthermore, dendrograms – like other tree

models – have high variance in that small changes in the data points can lead to large

changes in the dendrogram.

In conclusion, hierarchical clustering methods have the distinct advantage that the

number of clusters does not need to be fixed in advance. However, this advantage

comes at considerable computational cost. Furthermore, we now need to choose not
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Figure 8.18. (left) 20 data points, generated by uniform random sampling. (middle) The den-

drogram generated from complete linkage. The three clusters suggested by the dendrogram are

spurious as they cannot be observed in the data. (right) The rapidly decreasing silhouette val-

ues in each cluster confirm the absence of a strong cluster structure. Point 18 has a negative

silhouette value as it is on average closer to the green points than to the other red points.

just the distance measure used, but also the linkage function.

8.6 From kernels to distances

In Section 7.5 we discussed how kernels can be used to extend the power of linear mod-

els considerably. Recall that a kernel is a function κ(xi ,x j )=φ(xi )·φ(x j ) that calculates

a dot product in some feature space, but without constructing the feature vectors φ(x)

explicitly. Any learning method that can be defined purely in terms of dot products

of data points is amenable to such ‘kernelisation’. Because of the close connection

between Euclidean distance and dot products we can apply the same ‘kernel trick’ to

many distance-based learning methods.

The key insight is that Euclidean distance can be rewritten in terms of dot products:

Dis2(x,y)= ||x−y||2 =
√

(x−y) · (x−y)=√x ·x−2x ·y+y ·y

This formula clearly shows that the distance between x and y decreases whenever the

dot product x ·y increases, which suggests that the dot product itself is a kind of sim-

ilarity measure. However, it is not translation-invariant, because it depends on the

location of the origin. The two terms x ·x and y ·y have the effect of making the overall

expression translation-invariant. Replacing the dot product with a kernel function κ,

we can construct the following kernelised distance:

Disκ(x,y)=√κ(x,x)−2κ(x,y)+κ(y,y) (8.5)

It turns out that Disκ defines a pseudo-metric (see Definition 8.2 on p.235) whenever

κ is a positive semi-definite kernel.2

2It is only a metric if the feature mapping φ is injective: suppose not, then some distinct x and y are

mapped to the same feature vector φ(x)=φ(y), from which we derive κ(x,x)−2κ(x,y)+κ(y,y)=φ(x) ·φ(x)−
2φ(x) ·φ(y)+φ(y) ·φ(y)= 0.



8.6 From kernels to distances 259

As an illustration, Algorithm 8.5 adapts the �K -means algorithm (Algorithm 8.1

on p.248) to use a kernelised distance. So, the algorithm clusters according to a non-

linear distance in instance space, corresponding to Euclidean distance in an implicit

feature space. However, one complication arises, which is that Theorem 8.1 doesn’t

apply to non-linear distances, and so we cannot construct cluster means in instance

space. For this reason Algorithm 8.5 treats the clustering as a partition rather than a set

of exemplars. Consequently, assigning each data point x to its nearest cluster (step 3)

is now of quadratic complexity, since for each cluster we need to sum up the distances

of all its members to x. In contrast, this step is linear in |D| for the K -means algorithm.

There is an alternative way to turn dot products into distances. Since the dot prod-

uct can be written as ||x|| · ||y||cosθ, where θ is the angle between the vectors x and y,

we define the cosine similarity as

cosθ = x ·y
||x|| · ||y|| =

x ·y√
(x ·x)(y ·y)

(8.6)

Cosine similarity differs from Euclidean distance in that it doesn’t depend on the length

of the vectors x and y. On the other hand, it is not translation-independent, but assigns

special status to the origin: one way to think of it is as a projection onto a unit sphere

around the origin, and measuring distance on that sphere. Cosine similarity is usually

turned into a distance metric by taking 1−cosθ. Being defined entirely in terms of dot

products, it is as easily kernelised as Euclidean distance.

Algorithm 8.5: Kernel-KMeans(D,K ) – K -means clustering using kernelised dis-

tance Disκ.

Input : data D ⊆X ; number of clusters K ∈N.

Output : K -fold partition D1� . . .�DK =D .

1 randomly initialise K clusters D1, . . . ,DK ;

2 repeat

3 assign each x ∈D to argmin j
1
|D j |
∑

y∈D j
Disκ(x,y);

4 for j = 1 to K do

5 D j ← {x ∈D|x assigned to cluster j };

6 end

7 until no change in D1, . . . ,DK ;

8 return D1, . . . ,DK ;
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8.7 Distance-based models: Summary and further reading

Along with linear models, distance-based models are the second group of models with

strong geometric intuitions. The literature on distance-based models is rich and di-

verse; in this chapter I’ve concentrated on getting the main intuitions across.

� In Section 8.1 we reviewed the most commonly used distance metrics: the Minkowski

distance or p-norm with special cases Euclidean distance (p = 2) and Manhat-

tan distance (p = 1); the Hamming distance, which counts the number of bits or

literals that are different; and the Mahalanobis distance, which decorrelates and

normalises the features (Mahalanobis, 1936). Other distances can be taken into

account, as long as they satisfy the requirements of a distance metric listed in

Definition 8.2.

� Section 8.2 investigated the key concepts of neighbours and exemplars. Exem-

plars are either centroids that find a centre of mass according to a chosen dis-

tance metric, or medoids that find the most centrally located data point. The

most commonly used centroid is the arithmetic mean, which minimises squared

Euclidean distance to all other points. Other definitions of centroids are possi-

ble but harder to compute: e.g., the geometric median is the point minimising

Euclidean distance, but does not admit a closed-form solution. The complex-

ity of finding a medoid is always quadratic regardless of the distance metric. We

then considered nearest-neighbour decision rules, and looked in particular at

the difference between 2-norm and 1-norm nearest-exemplar decision bound-

aries, and how these get refined by switching to a 2-nearest-exemplars decision

rule.

� In Section 8.3 we discussed nearest-neighbour models which simply use the train-

ing data as exemplars. This is a very widely used model for classification, the ori-

gins of which can be traced back to Fix and Hodges (1951). Despite its simplicity,

it can be shown that with sufficient training data the error rate is at most twice

the optimal error rate (Cover and Hart, 1967). The 1-nearest neighbour classi-

fier has low bias but high variance; by increasing the number of neighbours over

which we aggregate we can reduce the variance but at the same time increase

the bias. The nearest-neighbour decision rule can also be applied to real-valued

target variables, and more generally to any task where we have an appropriate

aggregator for multiple target values.

� Section 8.4 considered a number of algorithms for distance-based clustering us-

ing either arithmetic means or medoids. The K -means algorithm is a simple

heuristic approach to solve the K -means problem that was originally proposed
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in 1957 and is sometimes referred to as Lloyd’s algorithm (Lloyd, 1982). It is de-

pendent on the initial configuration and can easily converge to the wrong sta-

tionary point. We also looked at the K -medoids and partitioning around medoids

algorithms, the latter due to Kaufman and Rousseeuw (1990). These are compu-

tationally more expensive due to the use of medoids. Silhouettes (Rousseeuw,

1987) are a useful technique to check whether points are on average closer to the

other members of their cluster than they are to the members of the neighbouring

cluster. Much more detail about these and other clustering methods is provided

by Jain, Murty and Flynn (1999).

� Whereas the previous clustering methods all result in a partition of the instance

space and are therefore predictive, hierarchical clustering discussed in Section

8.5 applies only to the given data and is hence descriptive. A distinct advantage

is that the clustering is constructed in the form of a dendrogram, which means

that the number of clusters does not need to be specified in advance and can be

chosen by inspecting the dendrogram. However, the method is computationally

expensive and infeasible for large data sets. Furthermore, it is not always obvious

which of the possible linkage functions to choose.

� Finally, in Section 8.6 we briefly considered how distances can be ‘kernelised’,

and we gave one example in the form of kernel K -means. The use of a non-

Euclidean distance metric leads to quadratic complexity of recalculating the clus-

ters in each iteration.

�



CHAPTER 9

Probabilistic models

T
HE THIRD AND FINAL FAMILY of machine learning models considered in this book are

probabilistic models. We have already seen how probabilities can be useful to express

a model’s expectation about the class of a given instance. For example, a �probability

estimation tree (Section 5.2) attaches a class probability distribution to each leaf of the

tree, and each instance that gets filtered down to a particular leaf in a tree model is la-

belled with that particular class distribution. Similarly, a calibrated linear model trans-

lates the distance from the decision boundary into a class probability (Section 7.4).

These are examples of what are called discriminative probabilistic models. They model

the posterior probability distribution P (Y |X ), where Y is the target variable and X are

the features. That is, given X they return a probability distribution over Y .

The other main class of probabilistic models are called generative models. They

model the joint distribution P (Y , X ) of the target Y and the feature vector X . Once

we have access to this joint distribution we can derive any conditional or marginal

distribution involving the same variables. In particular, since P (X )=∑y P (Y = y, X ) it

follows that the posterior distribution can be obtained as

P (Y |X )= P (Y , X )∑
y P (Y = y, X )

Alternatively, generative models can be described by the likelihood function P (X |Y ),

since P (Y , X ) = P (X |Y )P (Y ) and the target or prior distribution (usually abbreviated

262
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to ‘prior’) can be easily estimated or postulated. Such models are called ‘generative’

because we can sample from the joint distribution to obtain new data points together

with their labels. Alternatively, we can use P (Y ) to sample a class and P (X |Y ) to sample

an instance for that class – this was illustrated for the spam e-mail example on p.29.

In contrast, a discriminative model such as a probability estimation tree or a linear

classifier models P (Y |X ) but not P (X ), and hence can be used to label data but not

generate it.

Since generative models can do anything that discriminative models do, they may

seem preferable. However, they have a number of drawbacks as well. First of all, note

that storing the joint distribution requires space exponential in the number of fea-

tures. This necessitates simplifying assumptions such as independence between fea-

tures, which may lead to inaccuracies if they are not valid in a particular domain. The

most common criticism levied against generative models is that accuracy in modelling

P (X ) may actually be achieved at the expense of less accurate modelling of P (Y |X ).

However, the issue is not yet fully understood, and there are certainly situations where

knowledge of P (X ) provides welcome additional understanding of the domain. For

example, we may be less concerned about misclassifying certain instances if they are

unlikely according to P (X ).

One of the most attractive features of the probabilistic perspective is that it allows

us to view learning as a process of reducing uncertainty. For instance, a uniform class

prior tells us that, before knowing anything about the instance to be classified, we are

maximally uncertain about which class to assign. If the posterior distribution after ob-

serving the instance is less uniform, we have reduced our uncertainty in favour of one

class or the other. We can repeat this process every time we receive new information,

using the posterior obtained in the previous step as the prior for the next step. This

process can be applied, in principle, to any unknown quantity that we come across.

Example 9.1 (Spam or not?). Suppose we want to estimate the probability θ that

an arbitrary e-mail is spam, so that we can use the appropriate prior distribution.

The natural thing to do is to inspect n e-mails, determine the number of spam e-

mails d , and set θ̂ = d/n; we don’t really need any complicated statistics to tell us

that. However, while this is the most likely estimate of θ – the maximum a pos-

teriori (MAP) estimate, using the terminology introduced on p.28 – this doesn’t

mean that other values of θ are completely ruled out. We model this by a proba-

bility distribution over θ which is updated each time new information comes in.

This is further illustrated in Figure 9.1 for a distribution that is more and more

skewed towards spam.
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Figure 9.1. Each time we inspect an e-mail, we are reducing our uncertainty regarding the prior

spam probability θ. After we inspect two e-mails and observe one spam, the possible θ values

are characterised by a symmetric distribution around 1/2. If we inspect a third, fourth, . . . , tenth

e-mail and each time (except the first one) it is spam, then this distribution narrows and shifts

a little bit to the right each time. As you would expect, the distribution for n e-mails reaches

its maximum at θ̂MAP = n−1
n (e.g., θ̂MAP = 0.8 for n = 5); however, asymmetric distributions like

these contain information that cannot be conveyed by single numbers such as the mean or the

maximum.

Explicitly modelling the posterior distribution over the parameter θ has a number

of advantages that are usually associated with the ‘Bayesian’ perspective:

� We can precisely characterise the uncertainty that remains about our estimate

by quantifying the spread of the posterior distribution.

� We can obtain a generative model for the parameter by sampling from the poste-

rior distribution, which contains much more information than a summary statis-

tic such as the MAP estimate can convey – so, rather than using a single e-mail

with θ = θMAP, our generative model can contain a number of e-mails with θ

sampled from the posterior distribution.

� We can quantify the probability of statements such as ‘e-mails are biased towards

ham’ (the tiny shaded area in Figure 9.1 demonstrates that after observing one

ham and nine spam e-mails this probability is very small, about 0.6%).

� We can use one of these distributions to encode our prior beliefs: e.g., if we be-

lieve that the proportions of spam and ham are typically 50–50, we can take the

distribution for n = 2 (the lowest, symmetric one in Figure 9.1) as our prior.1

1Statisticians call a prior that has the same mathematical form as a posterior distribution a conjugate
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The key point is that probabilities do not have to be interpreted as estimates of relative

frequencies, but can carry the more general meaning of (possibly subjective) degrees of

belief . Consequently, we can attach a probability distribution to almost anything: not

just features and targets, but also model parameters and even models. For instance,

in the example just given we were considering the distribution P (θ|D), where D repre-

sents the data (i.e., the classes of the inspected e-mails).

An important concept related to probabilistic models is Bayes-optimality. A clas-

sifier is Bayes-optimal if it always assigns argmaxy P∗(Y = y |X = x) to an instance x,

where P∗ denotes the true posterior distribution. Even if we almost never know the

true distribution in a practical situation, there are several ways in which we can make

this concrete. For example, we can perform experiments with artificially generated

data for which we have chosen the true distribution ourselves: this allows us to exper-

imentally evaluate how close the performance of a model is to being Bayes-optimal.

Alternatively, the derivation of a probabilistic learning method usually makes certain

assumptions about the true distribution, which allows us to prove theoretically that the

model will be Bayes-optimal provided these assumptions are met. For example, later

on in this chapter we will state the conditions under which the basic linear classifier is

Bayes-optimal. The property is therefore best understood as a yardstick by which we

measure the performance of probabilistic models.

Since many models discussed in previous chapters are able to estimate class prob-

abilities and hence are discriminative probabilistic models, it is worth pointing out

that the choice of a single model, often referred to as model selection, does not nec-

essarily lead to Bayes-optimality – even if the model chosen is the one that performs

best under the true distribution. To illustrate this, let m∗ be the best probability es-

timation tree we have learned from a sufficient amount of data. Using m∗ we would

predict argmaxy P (Y = y |M =m∗, X = x) for an instance x, where M is a random vari-

able ranging over the model class m∗ was chosen from. However, these predictions are

not necessarily Bayes-optimal since

P (Y |X = x)= ∑
m∈M

P (Y , M =m|X = x) by marginalising over M

= ∑
m∈M

P (Y |M =m, X = x)P (M =m|X = x) by the chain rule

= ∑
m∈M

P (Y |M =m, X = x)P (M =m) by independence of M and X

Here, P (M) can be interpreted as a posterior distribution over models after seeing

the training data (the MAP model is therefore m∗ = argmaxm P (M = m)). The final

prior – in this case we have used the Beta distribution, which is conjugate to the binomial distribution.

Conjugate priors not only simplify the mathematics, but also allow more intuitive interpretations: in this

case we pretend we have already inspected two e-mails, one of which was spam – a very useful idea that we

have in fact already used in the form of the �Laplace correction in Section 2.3.
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expression in the preceding derivation tells us to average the predictions of all mod-

els, weighted by their posterior probabilities. Clearly, this distribution is only equal

to P (Y |M = m∗, X = x) if P (M) is zero for all models other than m∗, i.e., if we have

seen sufficient training data to rule out all but one remaining model. This is obviously

unrealistic.2

The outline of the chapter is as follows. In Section 9.1 we will see some useful con-

nections between the geometric perspective and the probabilistic viewpoint, which

come about when features are normally distributed. This allows us, as already men-

tioned, to state the conditions under which the basic linear classifier is Bayes-optimal.

In Section 9.2 we consider the case of categorical features, leading to the well-known

naive Bayes classifier. Section 9.3 revisits the linear classifier from a probabilistic per-

spective, which results in a new training algorithm explicitly aimed at optimising the

posterior probability of the examples. Section 9.4 discusses ways to deal with hid-

den variables. Finally, in Section 9.5 we briefly look at compression-based learning

methods, which can be given a probabilistic interpretation by means of information-

theoretic notions.

9.1 The normal distribution and its geometric interpretations

We can draw a connection between probabilistic and geometric models by considering

probability distributions defined over Euclidean spaces. The most common such dis-

tributions are normal distributions, also called Gaussians; Background 9.1 recalls the

most important facts concerning univariate and multivariate normal distributions. We

start by considering the univariate, two-class case. Suppose the values of x ∈ R follow

a mixture model: i.e., each class has its own probability distribution (a component of

the mixture model). We will assume a Gaussian mixture model, which means that the

components of the mixture are both Gaussians. We thus have

P (x|⊕)= 1�
2πσ⊕

exp

(
−1

2

[
x−μ⊕

σ⊕

]2
)

P (x|�)= 1�
2πσ�

exp

(
−1

2

[
x−μ�

σ�

]2
)

where μ⊕ and σ⊕ are the mean and standard deviation for the positive class, and μ�

and σ� are the mean and standard deviation for the negative class. This gives the fol-

lowing likelihood ratio:

LR(x)= P (x|⊕)

P (x|�)
= σ�

σ⊕
exp

(
−1

2

[(
x−μ⊕

σ⊕

)2
−
(

x−μ�

σ�

)2])
(9.1)

2Note that we do not require the two distributions to be equal, but rather that they reach the same maxi-

mum for Y . It is not hard to demonstrate that this, too, is not generally the case.
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The univariate normal or Gaussian distribution has the following probability density func-

tion:

P (x|μ,σ)= 1�
2πσ

exp

(
− (x−μ)2

2σ2

)
= 1

E
exp

(
−1

2

[x−μ

σ

]2)= 1

E
exp
(
−z2/2

)
, E =�2πσ

The distribution has two parameters: μ, which is the mean or expected value, as well as

the median (i.e., the point where the area under the density function is split in half) and

the mode (i.e., the point where the density function reaches its maximum); and σ, which

is the standard deviation and determines the width of the bell-shaped curve.

z = (x −μ)/σ is the z-score associated with x; it measures the number of standard devia-

tions between x and the mean (it has itself mean 0 and standard deviation 1). It follows

that P (x|μ,σ) = 1
σP (z|0,1), where P (z|0,1) denotes the standard normal distribution. In

other words, any normal distribution can be obtained from the standard normal distribu-

tion by scaling the x-axis with a factor σ, scaling the y-axis with a factor 1/σ (so the area

under the curve remains 1), and translating the origin over μ.

The multivariate normal distribution over d-vectors x= (x1, . . . , xd )T ∈Rd is

P (x|μ,Σ)= 1

Ed
exp

(
−1

2
(x−μ)TΣ−1(x−μ)

)
, Ed = (2π)d/2

√
|Σ| (9.2)

The parameters are the mean vector μ = (μ1, . . . ,μd )T and the d-by-d covariance matrix

Σ (see Background 7.2 on p.200). Σ−1 is the inverse of the covariance matrix, and |Σ| is

its determinant. The components of x may be thought of as d features that are possibly

correlated.

If d = 1, then Σ = σ2 = |Σ| and Σ−1 = 1/σ2, which gives us the univariate Gaussian as

a special case. For d = 2 we have Σ =
(

σ2
1 σ12

σ12 σ2
2

)
, |Σ| = σ2

1σ
2
2 − (σ12)2 and Σ−1 =

1
|Σ|

(
σ2

2 −σ12

−σ12 σ2
1

)
. Using z-scores we derive the following expression for the bivariate

normal distribution:

P (x1, x2|μ1,μ2,σ1,σ2,ρ)= 1

E2
exp

(
− 1

2(1−ρ2)
(z2

1 + z2
2 −2ρz1z2)

)
, E2 = 2πσ1σ2

√
1−ρ2

(9.3)

where zi = (xi −μi )/σi for i = 1,2, and ρ =σ12/σ1σ2 is the correlation coefficient between

the two features.

The multivariate standard normal distribution has μ= 0 (a d-vector with all 0s) and Σ= I

(the d-by-d identity matrix), and thus P (x|0,I)= 1
(2π)d/2 exp

(
− 1

2 x ·x
)
.

Background 9.1. The normal distribution.
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Figure 9.2. If positive examples are drawn from a Gaussian with mean and standard deviation 1

and negatives from a Gaussian with mean and standard deviation 2, then the two distributions

cross at x = ±1.85. This means that the maximum-likelihood region for positives is the closed

interval [−1.85,1.85], and hence the negative region is non-contiguous.

Let’s first consider the case that both components have the same standard devia-

tion, i.e., σ⊕ =σ� =σ. We can then simplify the exponent in Equation 9.1 as follows:

− 1

2σ2

[
(x−μ⊕)2− (x−μ�)2]=− 1

2σ2

[
x2−2μ⊕x+μ⊕2− (x2−2μ�x+μ�2)

]
=− 1

2σ2

[
−2(μ⊕−μ�)x+ (μ⊕2−μ�2)

]

= μ⊕−μ�

σ2

[
x− μ⊕+μ�

2

]

The likelihood ratio can thus be written as LR(x)= exp
(
γ(x−μ)

)
, with two parameters:

γ = (μ⊕ −μ�)/σ2 is the difference between the means in proportion to the variance,

and μ = (μ⊕ +μ�)/2 is the midpoint between the two class means. It follows that the

maximum-likelihood decision threshold (the value of x such that LR(x)= 1) is xML =μ.

If σ⊕ 
=σ�, the x2 terms in Equation 9.1 do not cancel. This results in two decision

boundaries and a non-contiguous decision region for one of the classes.

Example 9.2 (Univariate mixture model with unequal variances). Suppose

μ⊕ = 1, μ� = 2 and σ� = 2σ⊕ = 2, then LR(x)= 2exp
(−[(x−1)2− (x−2)2/4]/2

)=
2exp

(
3x2/8

)
. It follows that the ML decision boundaries are x = ±(8/3) ln2 =

±1.85. As can be observed in Figure 9.2, these are the points where the two

Gaussians cross. In contrast, if σ� = σ⊕ then we get a single ML decision

boundary at x = 1.5.
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Figure 9.3. (left) If the features are uncorrelated and have the same variance, maximum-

likelihood classification leads to the basic linear classifier, whose decision boundary is orthogo-

nal to the line connecting the means. (middle) As long as the per-class covariance matrices are

identical, the Bayes-optimal decision boundary is linear – if we were to decorrelate the features

by rotation and scaling, we would again obtain the basic linear classifier. (right) Unequal co-

variance matrices lead to hyperbolic decision boundaries, which means that one of the decision

regions is non-contiguous.

Non-contiguous decision regions can also occur in higher-dimensional spaces. The

following example demonstrates this for m = 2.

Example 9.3 (Bivariate Gaussian mixture). We use Equation 9.3 on p.267 to ob-

tain explicit expressions for the ML decision boundary in the bivariate case.

Throughout the example we assume μ1
⊕ =μ2

⊕ = 1 and μ1
� =μ2

� =−1.

(i) If all variances are 1 and both correlations are 0, then the ML decision

boundary is given by (x1−1)2+(x2−1)2−(x1+1)2−(x2+1)2 =−2x1−2x2−2x1−
2x2 = 0, i.e., x1+x2 = 0 (Figure 9.3 (left)).

(ii) If σ1
⊕ = σ1

� = 1, σ2
⊕ = σ2

� =�2 and ρ⊕ = ρ� =�2/2, then the ML deci-

sion boundary is (x1−1)2+ (x2−1)2/2−�2(x1−1)(x2−1)/
�

2− (x1+1)2− (x2+
1)2/2+�2(x1+1)(x2+1)/

�
2=−2x1 = 0 (Figure 9.3 (middle)).

(iii) If all variances are 1 and ρ⊕ = −ρ� = ρ, then the ML decision boundary

is given by (x1−1)2+ (x2−1)2−2ρ(x1−1)(x2−1)− (x1+1)2− (x2+1)2−2ρ(x1+
1)(x2+1) = −4x1−4x2−4ρx1x2−4ρ = 0, i.e., x1+ x2+ρx1x2+ρ = 0, which is a

hyperbole. Figure 9.3 (right) illustrates this for ρ = 0.7. Notice that the bottom

left of the instance space is a positive decision region, even though it contains no

training examples and it is closer to the negative mean than to the positive mean.

Notice the circles and ellipses in Figure 9.3, which provide a visual summary of the

covariance matrix. By projecting the shape for the positive class down to the x-axis we
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obtain the interval [μ1
⊕−σ1

⊕,μ1
⊕+σ1

⊕] – i.e., one standard deviation around the mean

– and similar for the negative class and the y-axis. Three cases can be distinguished:

(i) both x and y standard deviations are equal and the correlation coefficient is zero,

in which case the shape is a circle; (ii) the standard deviations are different and the

correlation coefficient is zero, which means the shape is an ellipse parallel to the axis

with the largest standard deviation; (iii) the correlation coefficient is non-zero: the ori-

entation of the ellipse gives the sign of the correlation coefficient, and its width varies

with the magnitude of the correlation coefficient.3 Mathematically, these shapes are

defined by setting f (x) in 1
Ed

exp
(− 1

2 f (x)
)

to 1 and solving for x, in order to capture the

points that are one standard deviation away from the mean. For the bivariate case this

leads to (z2
1+z2

2−2ρz1z2)= 1−ρ2, which can be translated into an elliptic equation for

x1 and x2 by expanding the z-scores. Notice that for ρ = 0 this is a circle around the

origin, and when ρ→ 1 this approaches the line z2 = z1 (we can’t put ρ = 1 because this

leads to a singular covariance matrix).

In the general multivariate case the condition (x−μ)TΣ−1(x−μ)= 1 defines a hyper-

ellipse, because Σ−1 satisfies certain properties.4 For a standard normal distribution,

one-standard-deviation contours lie on a hyper-sphere (a circle in d dimensions) de-

fined by x · x = 1. A very useful geometric intuition is that, just as hyper-spheres can

be turned into arbitrary hyper-ellipses by scaling and rotation, any multivariate Gaus-

sian can be obtained from the standard Gaussian by scaling and rotation (to obtain the

desired covariance matrix) and translation (to obtain the desired mean). Conversely,

we can turn an arbitrary multivariate Gaussian into a standard normal distribution by

translation, rotation and scaling, as was already suggested in Background 1.2 on p.24.

This results in decorrelated and normalised features.

The general form of the likelihood ratio can be derived from Equation 9.2 on p.267

as

LR(x)=
√
|Σ�|
|Σ⊕| exp

(
−1

2

[
(x−μ⊕)T(Σ⊕)−1(x−μ⊕)− (x−μ�)T(Σ�)−1(x−μ�)

])

where μ⊕ and μ� are the class means, and Σ⊕ and Σ� are the covariance matrices for

each class. To understand this a bit better, assume that Σ⊕ =Σ� = I (i.e., in each class

the features are uncorrelated and have unit variance), then we have

LR(x)= exp

(
−1

2

[
(x−μ⊕)T(x−μ⊕)− (x−μ�)T(x−μ�)

])

= exp

(
−1

2

[||x−μ⊕||2−||x−μ�||2])

3A common mistake is to think that the angle of rotation of the ellipse depends on the correlation coeffi-

cient; in fact, it is solely determined by the relative magnitudes of the marginal standard deviations.
4Specifically, xTAx defines a hyper-ellipse if A is symmetric and positive definite. Both properties are

satisfied if A is the inverse of a non-singular covariance matrix.
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It follows that LR(x)= 1 for any x equidistant from μ⊕ and μ�. But this means that the

ML decision boundary is a straight line at equal distances from the class means – in

which we recognise our old friend, the basic linear classifier! In other words, for un-

correlated, unit-variance Gaussian features, the basic linear classifier is Bayes-optimal.

This is a good example of how a probabilistic viewpoint can justify particular models.

More generally, as long as the per-class covariance matrices are equal, the ML deci-

sion boundary will be linear, intersecting μ⊕−μ� in the middle, but not at right angles

if the features are correlated. This means that the basic linear classifier is only Bayes-

optimal in this case if we first decorrelate and normalise the features. With non-equal

class covariances the decision boundary will be hyperbolic. So, the three cases in Fig-

ure 9.3 generalise to the multivariate case.

We have now seen several examples of how the normal distribution links the prob-

abilistic and geometric viewpoints. The multivariate normal distribution essentially

translates distances into probabilities. This becomes obvious when we plug the defini-

tion of �Mahalanobis distance (Equation 8.1 on p.237) into Equation 9.2:

P (x|μ,Σ)= 1

Ed
exp

(
−1

2

(
DisM (x,μ|Σ)

)2) (9.4)

Similarly, the standard normal distribution translates Euclidean distances into proba-

bilities:

P (x|0,I)= 1

(2π)d/2
exp

(
−1

2
(Dis2(x,0))2

)

Conversely, we see that the negative logarithm of the Gaussian likelihood can be inter-

preted as a squared distance:

− lnP (x|μ,Σ)= lnEd +
1

2

(
DisM (x,μ|Σ)

)2
The intuition is that the logarithm transforms the multiplicative probability scale into

an additive scale (which, in the case of Gaussian distributions, corresponds to a squared

distance). Since additive scales are often easier to handle, log-likelihoods are a com-

mon concept in statistics.

Another example of the link between the geometric and the probabilistic perspec-

tive occurs when we consider the question of estimating the parameters of a normal

distribution. For example, suppose we want to estimate the mean μ of a multivariate

Gaussian distribution with given covariance matrix Σ from a set of data points X . The

principle of maximum-likelihood estimation states that we should find the value of μ

that maximises the joint likelihood of X . Assuming that the elements of X were inde-

pendently sampled, the joint likelihood decomposes into a product over the individual
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data points in X , and the maximum-likelihood estimate can be found as follows:

μ̂= argmax
μ

∏
x∈X

P (x|μ,Σ)

= argmax
μ

∏
x∈X

1

Ed
exp

(
−1

2

(
DisM (x,μ|Σ)

)2) using Equation 9.4

= argmin
μ

∑
x∈X

[
lnEd +

1

2

(
DisM (x,μ|Σ)

)2] taking negative logarithms

= argmin
μ

∑
x∈X

(
DisM (x,μ|Σ)

)2 dropping constant term and factor

We thus find that the maximum-likelihood estimate of the mean of a multivariate dis-

tribution is the point that minimises the total squared Mahalanobis distance to all

points in X . For the identity covariance matrix Σ= I we can replace Mahalanobis dis-

tance with Euclidean distance, and by Theorem 8.1 the point minimising total squared

Euclidean distance to all points in X is the arithmetic mean 1
|X |
∑

x∈X x.

As a final example of how geometric and probabilistic views of the same problem

can be strongly connected I will now demonstrate how the �least-squares solution to

a linear regression problem (Section 7.1) can be derived as a maximum-likelihood esti-

mate. For ease of notation we will look at the univariate case discussed in Example 7.1.

The starting point is the assumption that our training examples (hi , yi ) are noisy mea-

surements of true function points (xi , f (xi )): i.e., yi = f (xi )+εi , where the εi are inde-

pendently and identically distributed errors. (Notice the slight change of notation as yi

is now no longer the true function value.) We want to derive the maximum-likelihood

estimates ŷi of f (xi ). We can derive this if we assume a particular noise distribution,

for example Gaussian with variance σ2. It then follows that each yi is normally dis-

tributed with mean a+bxi and variance σ2, and thus

P (yi |a,b,σ2)= 1�
2πσ2

exp

(
−
(
yi − (a+bxi )

)2
2σ2

)

Since the noise terms εi are independent for different i , so are the yi and so the joint

probability over all i is simply the product of n of these Gaussians:

P (y1, . . . , yn |a,b,σ2)=
n∏

i=1

1�
2πσ2

exp

(
−
(
yi − (a+bxi )

)2
2σ2

)

=
(

1�
2πσ2

)n
exp

(
−
∑n

i=1

(
yi − (a+bxi )

)2
2σ2

)

For ease of algebraic manipulation we take the negative natural logarithm:

− lnP (y1, . . . , yn |a,b,σ2)= n

2
ln2π+ n

2
lnσ2+

∑n
i=1

(
yi − (a+bxi )

)2
2σ2
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Taking the partial derivatives with respect to a, b and σ2 and setting to zero in order to

maximise the negative log likelihood gives the following three equations:

n∑
i=1

yi − (a+bxi )= 0

n∑
i=1

(
yi − (a+bxi )

)
xi = 0

n

2

1

σ2 −
∑n

i=1

(
yi − (a+bxi )

)2
2(σ2)2 = 0

The first two equations are essentially the same as derived in Example 7.1 and give us

â = y − b̂x and b̂ = σx y /σxx , respectively. The third equation tells us that the sum of

squared residuals is equal to nσ2 and gives the maximum-likelihood estimate of the

noise variance as
(∑n

i=1

(
yi − (a+bxi )

)2)/n.

It is reassuring that the probabilistic viewpoint allows us to derive (ordinary) east-

squares regression from first principles. On the other hand, a full treatment would re-

quire noise on the x-values as well (total least squares), but this complicates the math-

ematics and does not necessarily have a unique solution. This illustrates that a good

probabilistic treatment of a machine learning problem achieves a balance between solid

theoretical foundations and the pragmatism required to obtain a workable solution.

9.2 Probabilistic models for categorical data

To kill time during long drives to some faraway holiday destination, my sisters and I

would often play games involving passing cars. For example, we would ask each other

to look out for cars that had a particular colour, were from a particular country or had

a particular letter on the numberplate. A binary question such as ‘is the car blue?’ is

called a Bernoulli trial by statisticians. They are modelled as a binary random variable

whose probability of success is fixed over each independent trial. We used a Bernoulli

distribution to model the event of an e-mail being ham in Example 9.1. On top of such

a random variable, other probability distributions can be built. For example, we may

want to guess how many of the next n cars are blue: this is governed by the binomial

distribution. Or the task may be to estimate how many cars we need to see until the

first Dutch one: this number follows a geometric definition. Background 9.2 will help

to refresh your memory regarding the main definitions.

Categorical variables or features (also called discrete or nominal) are ubiquitous

in machine learning. Perhaps the most common form of the Bernoulli distribution

models whether or not a word occurs in a document. That is, for the i -th word in our

vocabulary we have a random variable Xi governed by a Bernoulli distribution. The

joint distribution over the bit vector X = (X1, . . . , Xk ) is called a multivariate Bernoulli

distribution. Variables with more than two outcomes are also common: for example,
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The Bernoulli distribution, named after the Swiss seventeenth century mathematician Ja-

cob Bernoulli, concerns Boolean or binary events with two possible outcomes: success or

1, and failure or 0. A Bernoulli distribution has a single parameter θ which gives the prob-

ability of success: hence P (X = 1)= θ and P (X = 0)= 1−θ. The Bernoulli distribution has

expected value E [X ]= θ and variance E
[
(X −E [X ])2]= θ(1−θ).

The binomial distribution arises when counting the number of successes S in n indepen-

dent Bernoulli trials with the same parameter θ. It is described by

P (S = s)=
(

n

s

)
θs (1−θ)n−s for s ∈ {0, . . . ,n}

This distribution has expected value E [S]= nθ and variance E
[
(S−E [S])2]= nθ(1−θ).

The categorical distribution generalises the Bernoulli distribution to k ≥ 2 outcomes. The

parameter of the distribution is a k-vector θ = (θ1, . . . ,θk
)

such that
∑k

i=1 θi = 1.

Finally, the multinomial distribution tabulates the outcomes of n independent and iden-

tically distributed (i.i.d.) categorical trials. That is, X= (X1, . . . , Xk
)

is a k-vector of integer

counts, and

P (X= (x1, . . . , xk
)
)= n!

θ
x1
1

x1!
· · ·

θ
xk
k

xk !

with
∑k

i=1 xi = n. Notice that setting n = 1 gives us an alternative way of stating the cat-

egorical distribution as P (X = (x1, . . . , xk
)
) = θ

x1
1 · · ·θxk

k , with exactly one of the xi equal

to 1 and the rest set to 0. Furthermore, setting k = 2 gives an alternative expression for

the Bernoulli distribution as P (X = x)= θx (1−θ)1−x for x ∈ {0,1}. It is also useful to note

that if X follows a multinomial distribution, then each component Xi follows a binomial

distribution with parameter θi .

We can estimate the parameters of these distributions by counting in a straightforward

way. Suppose a b a c c b a a b c is a sequence of words. We might be interested in

individual words being a or not, and interpret the data as coming from 10 i.i.d. Bernoulli

trials, which would allow us to estimate θ̂a = 4/10 = 0.4. This same parameter generates

a binomial distribution of the number of occurrences of the word a in similar sequences.

Alternatively, we can estimate the parameters of the categorical (word occurrences) and

multinomial (word counts) distributions as θ̂ = (0.4,0.3,0.3).

It is almost always a good idea to smooth these distributions by including pseudo-counts.

Imagine our vocabulary includes the word d but we haven’t yet observed it, then a

maximum-likelihood estimate would set θ̂d = 0. We can smooth this by adding a virtual

occurrence of each word to our observations, leading to θ̂′ = (5/14,4/14,4/14,1/14). In

the case of a binomial this is the Laplace correction.

Background 9.2. Probability distributions for categorical data.
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every word position in an e-mail corresponds to a categorical variable with k out-

comes, where k is the size of the vocabulary. The multinomial distribution manifests

itself as a count vector: a histogram of the number of occurrences of all vocabulary

words in a document. This establishes an alternative way of modelling text documents

that allows the number of occurrences of a word to influence the classification of a

document.

Both these document models are in common use. Despite their differences, they

both assume independence between word occurrences, generally referred to as the

naive Bayes assumption. In the multinomial document model, this follows from the

very use of the multinomial distribution, which assumes that words at different word

positions are drawn independently from the same categorical distribution. In the mul-

tivariate Bernoulli model we assume that the bits in a bit vector are statistically inde-

pendent, which allows us to compute the joint probability of a particular bit vector

(x1, . . . , xk ) as the product of the probabilities of each component P (Xi = xi ). In prac-

tice, such word independence assumptions are often not true: if we know that an e-

mail contains the word ‘Viagra’, we can be quite sure that it will also contain the word

‘pill’. In any case, the experience is that, while the naive Bayes assumption almost cer-

tainly leads to poor probability estimates, it often doesn’t harm ranking performance.

This means that, provided the classification threshold is chosen with some care, we

can usually get good classification performance too.

Using a naive Bayes model for classification

Assume that we have chosen one of the possible distributions to model our data X .

In a classification context, we furthermore assume that the distribution depends on

the class, so that P (X |Y = spam) and P (X |Y = ham) are different distributions. The

more different these two distributions are, the more useful the features X are for clas-

sification. Thus, for a specific e-mail x we calculate both P (X = x|Y = spam) and

P (X = x|Y = ham), and apply one of several possible decision rules:

maximum likelihood (ML) – predict argmaxy P (X = x|Y = y);

maximum a posteriori (MAP) – predict argmaxy P (X = x|Y = y)P (Y = y);

recalibrated likelihood – predict argmaxy wy P (X = x|Y = y).

The relation between the first two decision rules is that ML classification is equivalent

to MAP classification with a uniform class distribution. The third decision rule gener-

alises the first two in that it replaces the class distribution with a set of weights learned

from the data: this makes it possible to correct for estimation errors in the likelihoods,

as we shall see later.
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Example 9.4 (Prediction using a naive Bayes model). Suppose our vocabulary

contains three words a, b and c, and we use a multivariate Bernoulli model for

our e-mails, with parameters

θ⊕ = (0.5,0.67,0.33) θ� = (0.67,0.33,0.33)

This means, for example, that the presence of b is twice as likely in spam (+),

compared with ham.

The e-mail to be classified contains words a and b but not c, and hence is

described by the bit vector x= (1,1,0). We obtain likelihoods

P (x|⊕)= 0.5 ·0.67 · (1−0.33)= 0.222 P (x|�)= 0.67 ·0.33 · (1−0.33)= 0.148

The ML classification of x is thus spam. In the case of two classes it is often conve-

nient to work with likelihood ratios and odds. The likelihood ratio can be calcu-

lated as P (x|⊕)
P (x|�) = 0.5

0.67
0.67
0.33

1−0.33
1−0.33 = 3/2 > 1. This means that the MAP classification

of x is also spam if the prior odds are more than 2/3, but ham if they are less than

that. For example, with 33% spam and 67% ham the prior odds are P (⊕)
P (�) = 0.33

0.67 =
1/2, resulting in a posterior odds of P (⊕|x)

P (�|x) = P (x|⊕)
P (x|�)

P (⊕)
P (�) = 3/2 · 1/2 = 3/4 < 1. In

this case the likelihood ratio for x is not strong enough to push the decision away

from the prior.

Alternatively, we can employ a multinomial model. The parameters of a

multinomial establish a distribution over the words in the vocabulary, say

θ⊕ = (0.3,0.5,0.2) θ� = (0.6,0.2,0.2)

The e-mail to be classified contains three occurrences of word a, one single oc-

currence of word b and no occurrences of word c, and hence is described by the

count vector x = (3,1,0). The total number of vocabulary word occurrences is

n = 4. We obtain likelihoods

P (x|⊕)= 4!
0.33

3!

0.51

1!

0.20

0!
= 0.054 P (x|�)= 4!

0.63

3!

0.21

1!

0.20

0!
= 0.1728

The likelihood ratio is
( 0.3

0.6

)3 ( 0.5
0.2

)1 ( 0.2
0.2

)0 = 5/16. The ML classification of x is thus

ham, the opposite of the multivariate Bernoulli model. This is mainly because of

the three occurrences of word a, which provide strong evidence for ham.
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Notice how the likelihood ratio for the multivariate Bernoulli model is a product of

factors θ⊕i /θ�i if xi = 1 in the bit vector to be classified, and (1−θ⊕i )/(1−θ�i ) if xi = 0.

For the multinomial model the factors are
(
θ⊕i /θ�i

)xi . One consequence of this is that

the multinomial model only takes the presence of words into account, whereas in the

multivariate Bernoulli model absent words can make a difference. In the previous ex-

ample, not containing word b corresponds to a factor of (1−0.67)/(1−0.33) = 1/2 in

the likelihood ratio. The other main difference between the two models is that multi-

ple occurrences of words are treated like duplicated features in the multinomial model,

through the exponential ‘weight’ xi . This becomes clearer by taking the logarithm of

the likelihood ratio, which is
∑

i xi (lnθ⊕i − lnθ�i ): this expression is linear in lnθ⊕i and

lnθ�i with xi as weights. Notice that this does not mean that naive Bayes classifiers

are linear in the sense discussed in Chapter 7 unless we can demonstrate a linear rela-

tionship between lnθ and the corresponding feature value. But we can say that naive

Bayes models are linear in a particular space (the ‘log-odds’ space) obtained by apply-

ing a well-defined transformation to the features. We will return to this point when we

discuss �feature calibration in Section 10.2.

The fact that the joint likelihood ratio of a naive Bayes model factorises as a prod-

uct of likelihood ratios of individual words is a direct consequence of the naive Bayes

assumption. In other words, the learning task decomposes into univariate tasks, one

for each word in the vocabulary. We have encountered such a decomposition before

when we discussed �multivariate linear regression in Section 7.1. There, we saw an

example of how ignoring feature correlation could be harmful. Can we come up with

similar examples for naive Bayes classifiers? Consider the situation when a particular

word occurs twice in the vocabulary. In that case, we have the same factor occurring

twice in the product for the likelihood ratio, and are effectively giving the word in ques-

tion twice the weight of other words. While this is an extreme example, such double-

counting does have noticeable effects in practice. I previously gave the example that if

a spam e-mail contains the word ‘Viagra’, it is also expected to contain the word ‘pill’,

so seeing the two words together should not give much more evidence for spam than

seeing the first word on its own, and the likelihood ratio for the two words should not

be much higher than that of the first word. However, multiplying two likelihood ratios

larger than 1 will result in an even larger likelihood ratio. As a result, the probability

estimates of a naive Bayes classifier are often pushed too far towards 0 or 1.

This may not seem such a big deal if we are only interested in classification, and not

in the probability estimates as such. However, an often overlooked consequence of hav-

ing uncalibrated probability estimates such as those produced by naive Bayes is that both

the ML and MAP decision rules become inadequate. Unless we have evidence that the

model assumptions are satisfied, the only sensible thing to do in this case is to invoke

the recalibrated likelihood decision rule, which requires one to learn a weight vector
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Figure 9.4. (left) ROC curves produced by two naive Bayes classifiers (solid line: a variant of the

multivariate Bernoulli model; dashed line: a variant of the multinomial model). Both models

have similar ranking performance and yield almost the same – more or less optimal – MAP de-

cision threshold. (right) On a different data set from the same domain, the multinomial model’s

MAP threshold is slightly better, hinting at somewhat better calibrated probability estimates. But

since the slope of the accuracy isometrics indicates that there are about four positives for every

negative, the optimal decision rule is in fact to always predict positive.

over the classes, in order to correct for the estimation errors in the likelihoods. Specif-

ically, we want to find weights wi such that predicting argmaxy wy P (X = x|Y = y) re-

sults in the smallest possible loss – e.g., the number of misclassified examples – over

a test set. For two classes this can be solved by the same procedure we considered for

�turning rankers into classifiers in Section 2.2. To see this, notice that for two classes

the recalibrated likelihood decision rule can be rewritten as

� predict positive if w⊕P (X = x|Y = ⊕) > w�P (X = x|Y = �) and negative other-

wise; which is equivalent to

� predict positive if P (X = x|Y =⊕)/P (X = x|Y =�)>w�/w⊕ and negative other-

wise

This demonstrates that in the two-class case we really have just one degree of freedom,

as multiplying the weights by a constant does not affect the decisions. In other words,

what we are interested in is finding the best threshold t = w�/w⊕ on the likelihood

ratio, which is essentially the same problem as finding the best operating point on an

ROC curve. The solution is given by the point on the highest accuracy isometric. Figure

9.4 illustrates this on two real-life data sets: in the left figure we see that the MAP deci-

sion threshold is more or less optimal, whereas in the right figure the optimal point is

in the top right-hand corner.
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For more than two classes, finding a globally optimal weight vector is computation-

ally intractable, which means that we need to resort to a heuristic method. In Section

3.1 such a method was demonstrated for three classes. The idea is to fix the weights

one by one, using some ordering of the classes. That is, we use the two-class procedure

to optimally separate the i -th class from the previous i −1 classes.

Training a naive Bayes model

Training a probabilistic model usually involves estimating the parameters of the dis-

tributions used in the model. The parameter of a Bernoulli distribution can be es-

timated by counting the number of successes d in n trials and setting θ̂ = d/n. In

other words, we count, for each class, how many e-mails contain the word in ques-

tion. Such relative frequency estimates are usually smoothed by including pseudo-

counts, representing the outcome of virtual trials according to some fixed distributions.

In the case of a Bernoulli distribution the most common smoothing operation is the

Laplace correction, which involves two virtual trials, one of which results in success

and the other in failure. Consequently, the relative frequency estimate is changed to

(d +1)/(n+2). From a Bayesian perspective this amounts to adopting a uniform prior,

representing our initial belief that success and failure are equally likely. If appropriate,

we can strengthen the influence of the prior by including a larger number of virtual tri-

als, which means that more data is needed to move the estimate away from the prior.

For a categorical distribution smoothing adds one pseudo-count to each of the k cat-

egories, leading to the smoothed estimate (d +1)/(n+k). The m-estimate generalises

this further by making both the total number of pseudo-counts m and the way they

are distributed over the categories into parameters. The estimate for the i -th cate-

gory is defined as (d+pi m)/(n+m), where pi is a distribution over the categories (i.e.,∑k
i=1 pi = 1). Notice that smoothed relative frequency estimates – and hence products

of such estimates – can never attain the extreme values θ̂ = 0 or θ̂ = 1.

Example 9.5 (Training a naive Bayes model). We now show how the parameter

vectors in the previous example might have been obtained. Consider the follow-

ing e-mails consisting of five words a, b, c, d , e:

e1: b d e b b d e

e2: b c e b b d d e c c

e3: a d a d e a e e

e4: b a d b e d a b

e5: a b a b a b a e d

e6: a c a c a c a e d

e7: e a e d a e a

e8: d e d e d

We are told that the e-mails on the left are spam and those on the right are ham,

and so we use them as a small training set to train our Bayesian classifier. First,
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E-mail #a #b #c Class

e1 0 3 0 +
e2 0 3 3 +
e3 3 0 0 +
e4 2 3 0 +
e5 4 3 0 −
e6 4 0 3 −
e7 3 0 0 −
e8 0 0 0 −

E-mail a? b? c? Class

e1 0 1 0 +
e2 0 1 1 +
e3 1 0 0 +
e4 1 1 0 +
e5 1 1 0 −
e6 1 0 1 −
e7 1 0 0 −
e8 0 0 0 −

Table 9.1. (left) A small e-mail data set described by count vectors. (right) The same data set

described by bit vectors.

we decide that d and e are so-called stop words that are too common to convey

class information. The remaining words, a, b and c, constitute our vocabulary.

For the multinomial model, we represent each e-mail as a count vector, as in

Table 9.1 (left). In order to estimate the parameters of the multinomial, we sum

up the count vectors for each class, which gives (5,9,3) for spam and (11,3,3)

for ham. To smooth these probability estimates we add one pseudo-count for

each vocabulary word, which brings the total number of occurrences of vo-

cabulary words to 20 for each class. The estimated parameter vectors are thus

θ̂⊕ = (6/20,10/20,4/20) = (0.3,0.5,0.2) for spam and θ̂� = (12/20,4/20,4/20) =
(0.6,0.2,0.2) for ham.

In the multivariate Bernoulli model e-mails are represented by bit vectors,

as in Table 9.1 (right). Adding the bit vectors for each class results in (2,3,1) for

spam and (3,1,1) for ham. Each count is to be divided by the number of docu-

ments in a class, in order to get an estimate of the probability of a document con-

taining a particular vocabulary word. Probability smoothing now means adding

two pseudo-documents, one containing each word and one containing none

of them. This results in the estimated parameter vectors θ̂⊕ = (3/6,4/6,2/6) =
(0.5,0.67,0.33) for spam and θ̂� = (4/6,2/6,2/6)= (0.67,0.33,0.33) for ham.

Many other variations of the naive Bayes classifier exist. In fact, what is normally

understood as ‘the’ naive Bayes classifier employs neither a multinomial nor a multi-

variate Bernoulli model, but rather a multivariate categorical model. This means that

features are categorical, and the probability of the i -th feature taking on its l-th value

for class c examples is given by θ(c)
i l , under the constraint that

∑ki
l=1θ

(c)
i l = 1, where ki
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is the number of values of the i -th feature. These parameters can be estimated by

smoothed relative frequencies in the training set, as in the multivariate Bernoulli case.

We again have that the joint probability of the feature vector is the product of the in-

dividual feature probabilities, and hence P (Fi ,F j |C ) = P (Fi |C )P (F j |C ) for all pairs of

features and for all classes.

Notice, by the way, that conditional independence is quite different from uncondi-

tional independence: neither implies the other. To see that conditional independence

does not imply unconditional independence, imagine two words that are very likely to

occur in spam, but they are independent (i.e., the probability of both of them occurring

in a spam e-mail is the product of the marginal probabilities). Imagine further that they

are very unlikely – but also independent – in ham. Suppose I tell you an unclassified

e-mail contains one of the words: you would probably guess that it is a spam e-mail,

from which you would further guess that it also contains the other word – demonstrat-

ing that the words are not unconditionally independent. To see that unconditional

independence does not imply conditional independence, consider two different inde-

pendent words, and let an e-mail be spam if it contains at least one of the words and

ham otherwise, then among spam e-mails the two words are dependent (since if I know

that a spam e-mail doesn’t contain one of the words, then it must contain the other).

Another extension of the naive Bayes model is required when some of the features

are real-valued. One option is to discretise the real-valued features in a pre-processing

stage: this will be discussed in Chapter 10. Another option is to assume that the feature

values are normally distributed within each class, as discussed in the previous section.

In this context it is worth noting that the naive Bayes assumption boils down to as-

suming a diagonal covariance matrix within each class, so that each feature can be

treated independently. A third option that is also used in practice is to model the class-

conditional likelihood of each feature by a non-parametric density estimator. These

three options are illustrated in Figure 9.5.

In summary, the naive Bayes model is a popular model for dealing with textual,

categorical and mixed categorical/real-valued data. Its main shortcoming as a proba-

bilistic model – poorly calibrated probability estimates – are outweighed by generally

good ranking performance. Another apparent paradox with naive Bayes is that it isn’t

particularly Bayesian at all! For one thing, we have seen that the poor probability es-

timates necessitate the use of reweighted likelihoods, which avoids using Bayes’ rule

altogether. Secondly, in training a naive Bayes model we use maximum-likelihood pa-

rameter estimation, whereas a fully fledged Bayesian approach would not commit to a

particular parameter value, but rather employ a full posterior distribution. Personally, I

think the essence of naive Bayes is the decomposition of joint likelihoods into marginal

likelihoods. This decomposition is evocatively visualised by the Scottish tartan pattern

in Figure 1.3 on p.31, which is why I like to call naive Bayes the ‘Scottish classifier’.
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Figure 9.5. (left) Examples of three density estimators on 20 points sampled from a normal

distribution with zero mean and unit variance (dotted line)). A histogram is a simple non-

parametric method which employs a fixed number of equal-width intervals. A kernel density

estimator (in red) applies interpolation to obtain a smooth density function. The solid bell curve

(in blue) is obtained by estimating the sample mean and variance, assuming the true distribu-

tion is normal. (right) Here, the 20 points are sampled uniformly from [−2,2], and the non-

parametric methods generally do better.

9.3 Discriminative learning by optimising conditional likelihood

In the introduction to this chapter we distinguished between generative and discrim-

inative probabilistic models. Naive Bayes models are generative: after training they

can be used to generate data. In this section we look at one of the most commonly

used discriminative models: logistic regression.5 The easiest way to understand logis-

tic regression is as a linear classifier whose probability estimates have been logistically

calibrated using the method described in Section 7.4, but with one crucial difference:

calibration is an integral part of the training algorithm, rather than a post-processing

step. While in generative models the decision boundary is a by-product of modelling

the distributions of each class, logistic regression models the decision boundary di-

rectly. For example, if the classes are overlapping then logistic regression will tend to

locate the decision boundary in an area where classes are maximally overlapping, re-

gardless of the ‘shapes’ of the samples of each class. This results in decision boundaries

that are noticeably different from those learned by generative classifiers (Figure 9.6).

Equation 7.13 on p.222 expresses the likelihood ratio as exp
(
γ(d(x)−d0)

)
with

d(x) = w · x− t . Since we are learning the parameters all at once in discriminative

learning, we can absorb γ and d0 into w and t . So the logistic regression model is

5Notice that the term ‘regression’ is a bit of a misnomer here, since, even though a probability estimator

approximates an unknown function, the training labels are classes rather than true function values.
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Figure 9.6. (left) On this data set, logistic regression (in blue) outperforms the basic linear clas-

sifier (in red) and the least squares classifier (in orange) because the latter two are more sensitive

to the shape of the classes, while logistic regression concentrates on where the classes overlap.

(right) On this slightly different set of points, logistic regression is outperformed by the other

two methods because it concentrates too much on tracking the transition from mostly positive

to mostly negative.

simply given by

p̂(x)= exp(w ·x− t )

exp(w ·x− t )+1
= 1

1+exp(−(w ·x− t ))

Assuming the class labels are y = 1 for positives and y = 0 for negatives, this defines a

Bernoulli distribution for each training example:

P (yi |xi )= p̂(xi )yi (1− p̂(xi ))(1−yi )

It is important to note that the parameters of these Bernoulli distributions are linked

through w and t , and consequently there is one parameter for every feature dimension,

rather than for every training instance.

The likelihood function is

CL(w, t )=∏
i

P (yi |xi )=∏
i

p̂(xi )yi (1− p̂(xi ))(1−yi )

This is called conditional likelihood to stress that it gives us the conditional probability

P (yi |xi ) rather than P (xi ) as in a generative model. Notice that our use of the prod-

uct requires the assumption that the y-values are independent given x; but this is an

entirely reasonable assumption and not nearly as strong as the naive Bayes assump-

tion of x being independent within each class. As usual, the logarithm of the likelihood
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function is easier to work with:

LCL(w, t )=∑
i

yi ln p̂(xi )+ (1− yi ) ln(1− p̂(xi ))= ∑
x⊕∈Tr⊕

ln p̂(x⊕)+ ∑
x�∈Tr�

ln(1− p̂(x�))

We want to maximise the log-conditional likelihood with respect to these parame-

ters, which means that all partial derivatives must be zero:

∇wLCL(w, t )= 0

∂

∂t
LCL(w, t )= 0

Although these equations do not yield an analytic solution, they can be used to obtain

further insight into the nature of logistic regression. Concentrating on t , we first need

to do some algebraic groundwork.

ln p̂(x)= ln
exp(w ·x− t )

exp(w ·x− t )+1

=w ·x− t − ln(exp(w ·x− t )+1)

∂

∂t
ln p̂(x)=−1− ∂

∂t
ln(exp(w ·x− t )+1)

=−1− 1

exp(w ·x− t )+1
exp(w ·x− t ) · (−1)

= p̂(x)−1

Similarly for the negatives:

ln(1− p̂(x))= ln
1

exp(w ·x− t )+1

=− ln(exp(w ·x− t )+1)

∂

∂t
ln(1− p̂(x))= ∂

∂t
− ln(exp(w ·x− t )+1)

= −1

exp(w ·x− t )+1
exp(w ·x− t ) · (−1)

= p̂(x)

It follows that the partial derivative of LCL with respect to t has a simple form:

∂

∂t
LCL(w, t )= ∑

x⊕∈Tr⊕
(p̂(x)−1)+ ∑

x�∈Tr�
p̂(x�)

= ∑
xi∈Tr

(p̂(xi )− yi )

For the optimal solution this partial derivative is zero. What this means is that, on aver-

age, the predicted probability should be equal to the proportion of positives pos. This

is a satisfying result, as it is clearly a desirable global property of a calibrated classifier.
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Notice that grouping models such as probability estimating trees have this property by

construction, as they set the predicted probability equal to the empirical probability in

a segment.

A very similar derivation leads to the partial derivative of the log-conditional like-

lihood with respect to the j -th weight w j . The point to note here is that, whereas
∂
∂t (w ·x− t ) = −1, we have ∂

∂w j
(w ·x− t ) = ∂

∂w j

(∑
j w j x j − t

) = x j , the instance’s j -th

feature value. This then leads to

∂

∂w j
LCL(w, t )= ∑

xi∈Tr
(yi − p̂(xi ))xi j (9.5)

Setting this partial derivative to zero expresses another, feature-wise calibration prop-

erty. For example, if the j -th feature is a sparse Boolean feature that is mostly zero,

then this calibration property only involves the instances xi for which xi j = 1: on av-

erage, those instances should have their predicted probability equal the proportion of

positives among them.

Example 9.6 (Univariate logistic regression). Consider the data in Figure 9.7

with 20 points in each class. Although both classes were generated from nor-

mal distributions, class overlap in this particular sample is less than what could

be expected on the basis of the class means. Logistic regression is able to take

advantage of this and gives a much steeper sigmoid than the basic linear classi-

fier with logistic calibration (explained in Example 7.7 on p.222), which is entirely

formulated in terms of class means and variance. Also shown are the probabil-

ity estimates obtained from the convex hull of the ROC curve (see Figure 7.13

on p.224); this calibration procedure is non-parametric and hence better able to

detect the limited class overlap.

In terms of statistics, logistic regression has better mean squared error (0.040)

than the logistically calibrated classifier (0.057). Isotonic calibration leads to the

lowest error (0.021), but note that no probability smoothing has been applied

to mitigate the risk of overfitting. The sum of predicted probabilities is 18.7 for

the logistically calibrated classifier and 20 for the other two – i.e., equal to the

number of examples, which is a necessary condition for full calibration. Finally,∑
xi∈Tr(yi − p̂(xi ))xi is 2.6 for the logistically calibrated classifier, 4.7 for the ROC-

calibrated classifier, and 0 for logistic regression as expected from Equation 9.5.

In order to train a logistic regression model we need to find

w∗, t∗ = argmax
w,t

CL(w, t )= argmax
w,t

LCL(w, t )
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Figure 9.7. Logistic regression (in red) compared with probability estimates obtained by logistic

calibration (in blue) and isotonic calibration (in green); the latter two are applied to the basic lin-

ear classifier (estimated class means are indicated by circles). The corresponding three decision

boundaries are shown as vertical dotted lines.

This can be shown to be a convex optimisation problem, which means that there is

only one maximum. A range of optimisation techniques can be applied. One simple

approach is inspired by the perceptron algorithm and iterates over examples, using the

following update rule:

w=w+η(yi − p̂i )xi

where η is the learning rate. Notice the relationship with the partial derivative in Equa-

tion 9.5. Essentially, we are using single examples to approximate the direction of

steepest ascent.

9.4 Probabilistic models with hidden variables

Suppose you are dealing with a four-class classification problem with classes A, B ,

C and D . If you have a sufficiently large and representative training sample of size

n, you can use the relative frequencies in the sample nA , . . . ,nD to estimate the class

prior p̂ A = nA/n, . . . , p̂D = nD /n, as we have done many times before.6 Conversely, if

you know the prior and want to know the most likely class distribution in a random

6Of course, if you’re not sure whether the sample is large enough it is better to smooth these relative

frequency estimates by, e.g., the �Laplace correction (Section 2.3).
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sample of n instances, you would use the prior to calculate expected values E [nA] =
p A ·n, . . . ,E [nD ]= pD ·n. So, complete knowledge of one allows us to estimate or infer

the other. However, sometimes we have a bit of knowledge about both. For example,

we may know that p A = 1/2 and that C is twice as likely as B , without knowing the

complete prior. And we may know that the sample we saw last week was evenly split

between A∪B and C ∪D , and that C and D were equally large, but we can’t remember

the size of A and B separately. What should we do?

Formalising what we know about the prior, we have p A = 1/2; pB = β, as yet un-

known; pC = 2β, since it is twice pB ; and pD = 1/2−3β, since the four cases need to

add up to 1. Furthermore: nA +nB = a + b = s, nC = c and nD = d , with s, c and d

known. We want to infer a, b and β: however, it seems we are stuck in a chicken-and-

egg problem. If we knew β we would have full knowledge about the prior and we could

use that to infer expected values for a and b:

E [a]

E [b]
= 1/2

β
E [a]+E [b]= s

from which we could derive

E [a]= 1

1+2β
s E [b]= 2β

1+2β
s (9.6)

So, for example, if s = 20 and β= 1/10, then E [a]= 16 2
3 and E [b]= 3 1

3 .

Conversely, if we knew a and b, then we could estimate β by maximum-likelihood

estimation, using a multinomial distribution for a, b, c and d :

P (a,b,c,d |β)=K (1/2)aβb(2β)c (1/2−3β)d

lnP (a,b,c,d |β)= lnK +a ln(1/2)+b lnβ+c ln(2β)+d ln(1/2−3β)

Here, K is a combinatorial constant that doesn’t affect the value of β which maximises

the likelihood. Taking the partial derivative with respect to β gives

∂

∂β
lnP (a,b,c,d |β)= b

β
+ 2c

2β
− 3d

1/2−3β

Setting to 0 and solving for β finally gives

β̂= b+c

6(b+c+d)
(9.7)

So, for example, if b = 5 and c = d = 10, then β̂= 1/10.

The way out of this chicken-and-egg problem is to iterate the following two steps:

(i) calculate an expected value of the missing frequencies a and b from an assumed or

previously estimated value of the parameterβ; and (ii) calculate a maximum-likelihood

estimate of the parameter β from assumed or expected values of the missing frequen-

cies a and b. These two steps are iterated until a stationary configuration is reached.
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So, if we start with a = 15, b = 5 and c = d = 10, then we have just seen that β̂ = 1/10.

Plugging this value of β into Equation 9.6 gives us E [a]= 16 2
3 and E [b]= 3 1

3 . Plugging

these values back into Equation 9.7 yields β̂ = 2/21, which in turn gives E [a] = 16.8

and E [b] = 3.2, and so on. A stationary configuration with β = 0.0948, a = 16.813 and

b = 3.187 is reached in fewer than 10 iterations. In this simple case this is a global

optimum that is reached regardless of the starting point, essentially because the rela-

tionship between b and β is monotonic (E [b] increases with β according to Equation

9.6 and β̂ increases with b according to Equation 9.7). However, this is not normally

the case: we will return to this point later.

Expectation-Maximisation

The problem that we have just discussed is an example of a problem with missing data,

where the full data Y separates into observed variables X and hidden variables Z (also

called latent variables). In the example, the observed variables are c, d and s, and the

hidden variables are a and b. We also have model parameter(s) θ, which is β in the

example.7 Denote the estimate of θ in the t-th iteration as θt . We have two relevant

quantities:

� the expectation E
[

Z |X ,θt
]

of the hidden variables given the observed variables

and the current estimate of the parameters (so in Equation 9.6 the expectations

of a and b depend on s and β);

� the likelihood P (Y |θ), which is used to find the maximising value of θ.

In the likelihood function we need values for Y = X ∪Z . We obviously use the observed

values for X , but we need to use previously calculated expectations for Z . This means

that we really want to maximise P (X ∪ E
[

Z |X ,θt
] |θ), or equivalently, the logarithm

of that function. We now make the assumption that the logarithm of the likelihood

function is linear in Y : notice that this assumption is valid in the example above. For

any linear function f , f (E [Z ])= E
[

f (Z )
]

and thus we can bring the expectation outside

in our objective function:

lnP (X ∪E
[

Z |X ,θt ]|θ)= E
[
lnP (X ∪Z |θ)|X ,θt ]= E

[
lnP (Y |θ)|X ,θt ] (9.8)

This last expression is usually denoted as Q(θ|θt ), as it essentially tells us how to calcu-

late the next value of θ from the current one:

θt+1 = argmax
θ

Q(θ|θt )= argmax
θ

E
[
lnP (Y |θ)|X ,θt ] (9.9)

7Model parameters are also ‘hidden’ in a sense, but they are different from hidden variables in that you

would never expect to observe the value of a parameter (e.g., a class mean), whereas a hidden variable could

be observed in principle but happens to be unobserved in the case at hand.
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This, then, is the general form of the celebrated Expectation-Maximisation (EM)

algorithm, which is a powerful approach to probabilistic modelling with hidden vari-

ables or missing data. Similar to the example above, we iterate over assigning an ex-

pected value to the hidden variables given our current estimates of the parameters,

and re-estimating the parameters from these updated expectations, until a stationary

configuration is reached. We can start the iteration by initialising either the parameters

or the hidden variables in some way. The algorithm bears a striking resemblance to the

�K -means algorithm (Algorithm 8.1 on p.248), which also iterates over assigning data

points to current cluster means, and re-estimating the cluster means from the new as-

signments. This resemblance is not accidental, as we shall see in a moment. Like the

K -means algorithm, EM can be proved to always converge to a stationary configura-

tion for a wide class of probabilistic models. However, EM can get trapped in a local

optimum that is dependent on the initial configuration.

Gaussian mixture models

A common application of Expectation-Maximisation is to estimate the parameters of a

Gaussian mixture model from data. In such a model the data points are generated by K

normal distributions, each with their own mean μ j and covariance matrix Σ j , and the

proportion of points coming from each Gaussian is governed by a prior τ = (τ1, . . . ,τK ).

If each data point in a sample were labelled with the index of the Gaussian it came from

this would be a straightforward classification problem, which could be solved easily

by estimating each Gaussian’s μ j and Σ j separately from the data points belonging

to class j . However, we are now considering the much harder predictive clustering

problem in which the class labels are hidden and need to be reconstructed from the

observed feature values.

A convenient way to model this is to have for each data point xi a Boolean vector

zi = (zi 1, . . . , zi K ) such that exactly one bit zi j is set to 1 and the rest set to 0, signalling

that the i -th data point comes from the j -th Gaussian. Using this notation we can

adapt the expression for the�multivariate normal distribution (Equation 9.2 on p.267)

to obtain a general expression for a Gaussian mixture model:

P (xi ,zi |θ)=
K∑

j=1
zi jτ j

1

(2π)d/2
√|Σ j |

exp

(
−1

2
(xi −μ j )TΣ−1

j (xi −μ j )

)
(9.10)

Here, θ collects all the parameters τ, μ1, . . . ,μK and Σ1, . . . ,ΣK . The interpretation as a

generative model is as follows: we first randomly select a Gaussian using the prior τ ,

and then we invoke the corresponding Gaussian using the indicator variables zi j .
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In order to apply Expectation-Maximisation we form the Q function:

Q(θ|θt )= E
[

lnP (X∪Z|θ)|X,θt ]
= E

[
ln

n∏
i=1

P (xi ∪zi |θ)

∣∣∣∣∣X,θt

]

= E

[
n∑

i=1
lnP (xi ∪zi |θ)

∣∣∣∣∣X,θt

]

= E

[
n∑

i=1
ln

K∑
j=1

zi jτ j
1

(2π)d/2
√|Σ j |

exp

(
−1

2
(xi −μ j )TΣ−1

j (xi −μ j )

)∣∣∣∣∣X,θt

]

= E

[
n∑

i=1

K∑
j=1

zi j ln

(
τ j

1

(2π)d/2
√|Σ j |

exp

(
−1

2
(xi −μ j )TΣ−1

j (xi −μ j )

))∣∣∣∣∣X,θt

]
(*)

= E

[
n∑

i=1

K∑
j=1

zi j

(
lnτ j − d

2
ln(2π)− 1

2
ln |Σ j |− 1

2
(xi −μ j )TΣ−1

j (xi −μ j )

)∣∣∣∣∣X,θt

]

=
n∑

i=1

K∑
j=1

E
[

zi j
∣∣X,θt ](lnτ j − d

2
ln(2π)− 1

2
ln |Σ j |− 1

2
(xi −μ j )TΣ−1

j (xi −μ j )

)

(9.11)

The step marked (*) is possible because for a given i only one zi j is switched on, hence

we can bring the indicator variables outside the logarithm. The last line shows the Q

function in the desired form, involving on the one hand expectations over the hidden

variables conditioned on the observable data X and the previously estimated parame-

ters θt , and on the other hand expressions in θ that allow us to find θt+1 by maximisa-

tion.

The Expectation step of the EM algorithm is thus the calculation of the expected

values of the indicator variables E
[

zi j
∣∣X,θt

]
. Notice that expectations of Boolean vari-

ables take values on the entire interval [0,1], under the constraint that
∑K

j=1 zi j = 1 for

all i . In effect, the hard cluster assignment of K -means is changed into a soft assign-

ment – one of the ways in which Gaussian mixture models generalise K -means. Now,

suppose that K = 2 and we expect both clusters to be of equal size and with equal co-

variances. If a given data point xi is equidistant from the two cluster means (or rather,

our current estimates of these), then clearly E
[

zi 1|X,θt
] = E

[
zi 2|X,θt

] = 1/2. In the

general case these expectations are apportioned proportionally to the probability mass

assigned to the point by each Gaussian:

E
[

zi j
∣∣X,θt ]= τt

j f (xi |μt
j ,Σt

j )∑K
k=1τ

t
k f (xi |μt

k ,Σt
k )

(9.12)

where f (x|μ,Σ) stands for the multivariate Gaussian density function.

For the Maximisation step we optimise the parameters in Equation 9.11. Notice

there is no interaction between the terms containing τ j and the terms containing the
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other parameters, and so the prior distribution τ can be optimised separately:

τ t+1 = argmax
τ

n∑
i=1

K∑
j=1

E
[

zi j
∣∣X,θt ] lnτ j

= argmax
τ

K∑
j=1

E j lnτ j under the constraint
K∑

j=1
τ j = 1

where I have written E j for
∑n

i=1E
[

zi j
∣∣X,θt

]
, which is the total (partial) membership

of the j -th cluster – notice that
∑K

j=1 E j = n. For simplicity we assume K = 2, so that

τ2 = 1−τ1: then

τt+1
1 = argmax

τ1

E1 lnτ1+E2 ln(1−τ1)

Setting the derivative with respect to τ1 to zero and solving for τ1, it can be easily ver-

ified that τt+1
1 = E1/(E1 +E2) = E1/n and thus τt+1

2 = E2/n. In the general case of K

clusters we have analogously

τt+1
j = E j∑K

k=1 Ek
= 1

n

n∑
i=1

E
[

zi j
∣∣X,θt ] (9.13)

The means and covariance matrices can be optimised for each cluster separately:

μt+1
j ,Σt+1

j = argmax
μ j ,Σ j

n∑
i=1

E
[

zi j
∣∣X,θt ](−1

2
ln |Σ j |− 1

2
(xi −μ j )TΣ−1

j (xi −μ j )

)

= argmin
μ j ,Σ j

n∑
i=1

E
[

zi j
∣∣X,θt ](1

2
ln |Σ j |+ 1

2
(xi −μ j )TΣ−1

j (xi −μ j )

)

Notice that the term between brackets is a squared-distance term with the expectations

functioning as instance weights on each instance. This describes a generalised version

of the problem of finding the point that �minimises the sum of squared Euclidean dis-

tances to a set of points (Theorem 8.1 on p.238). While that problem is solved by the

arithmetic mean, here we simply take the weighted average over all the points:

μt+1
j = 1

E j

n∑
i=1

E
[

zi j
∣∣X,θt ]xi =

∑n
i=1E
[

zi j
∣∣X,θt

]
xi∑n

i=1E
[

zi j
∣∣X,θt

] (9.14)

Similarly, the covariance matrix is computed as a weighted average of covariance ma-

trices obtained from each data point, taking into account the newly estimated mean:

Σt+1
j = 1

E j

n∑
i=1

E
[

zi j
∣∣X,θt ] (xi −μt+1

j )(xi −μt+1
j )T

=
∑n

i=1E
[

zi j
∣∣X,θt

]
(xi −μt+1

j )(xi −μt+1
j )T

∑n
i=1E
[

zi j
∣∣X,θt

] (9.15)

Equations 9.12–9.15, then, constitute the EM solution to learning a Gaussian mix-

ture model from an unlabelled sample. I have presented it here in its most general
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Figure 9.8. (left) The blue line shows the true Gaussian mixture model from which the 10 points

on the x-axis were sampled; the colour of the points indicates whether they came from the left

or the right Gaussian. The other lines show convergence of Expectation-Maximisation to a sta-

tionary configuration from a random initialisation. (right) This plot shows four stationary con-

figurations for the same set of points. The EM algorithm was run for 20 iterations; the thickness

of one of the lines demonstrates that this configuration takes longer to converge.

form, explicitly modelling unequal cluster sizes and covariance matrices. The latter is

important as it allows for clusters of different shapes, unlike the K -means algorithm

which assumes that all clusters have the same spherical shape. Consequently, the

boundaries between clusters will not be linear, as they are in the clusterings learned

by K -means. Figure 9.8 demonstrates the convergence of EM on a simple univariate

data set, as well as the existence of multiple stationary configurations.

In conclusion, Expectation-Maximisation is a versatile and powerful method to

deal with missing variables in a principled way. As we have seen in detail for the Gaus-

sian mixture model, the main ingredient is an expression for the parametric likelihood

function P (X ∪Z |θ), from which the update equations can be derived by means of the

Q function. A word of caution is also in order, since – except in the simplest cases –

there will be more than one stationary configuration. Like with K -means, the optimi-

sation should therefore be run multiple times with different starting configurations.

9.5 Compression-based models

We end this chapter with a brief discussion of an approach to machine learning that

is both closely related to and quite distinct from the probabilistic approach. Consider

the maximum a posteriori decision rule again:

yMAP = argmax
y

P (X = x|Y = y)P (Y = y)
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Y P (Viagra= 1|Y ) IC (Viagra= 1|Y ) P (Viagra= 0|Y ) IC (Viagra= 0|Y )

spam 0.40 1.32 bits 0.60 0.74 bits

ham 0.12 3.06 bits 0.88 0.18 bits

Table 9.2. Example marginal likelihoods.

Taking negative logarithms, we can turn this into an equivalent minimisation:

yMAP = argmin
y

− logP (X = x|Y = y)− logP (Y = y) (9.16)

This follows because for any two probabilities 0 < p < p ′ < 1 we have ∞ > − log p >
− log p ′ > 0. If an event has probability p of happening, the negative logarithm of p

quantifies the information content of the message that the event has indeed happened.

This makes intuitive sense, as the less expected an event is, the more information an

announcement of the event contains. The unit of information depends on the base of

the logarithm: it is customary to take logarithms to the base 2, in which case informa-

tion is measured in bits. For example, if you toss a fair coin once and tell me it came

up heads, this contains − log2 1/2 = 1 bit of information; if you roll a fair die once and

let me know it came up six, the information content of your message is − log2 1/6= 2.6

bits. Equation 9.16 tells us that the MAP decision rule chooses the least surprising or

the most expected class for an instance x given particular prior distributions and like-

lihoods. We write IC(X |Y )=− log2 P (X |Y ) and IC(Y )=− log2 P (Y ).

Example 9.7 (Information-based classification). Table 9.2 reproduces the left

table in Table 1.3 on p.29 together with the relevant information content quanti-

ties. If Y is uniformly distributed then IC(Y = spam)= 1 bit and IC(Y = ham)= 1

bit. It follows that

argmin
y

(
IC(Viagra= 1|Y = y)+ IC(Y = y)

)= spam

argmin
y

(
IC(Viagra= 0|Y = y)+ IC(Y = y)

)= ham

If ham is four times as likely as spam then IC(Y = spam) = 2.32 bit and IC(Y =
ham)= 0.32 bit, and argminy

(
IC(Viagra= 1|Y = y)+ IC(Y = y)

)= ham.

Clearly, for a uniform distribution over k outcomes, each outcome has the same infor-

mation content − log2 1/k = log2 k. For a non-uniform distribution these information
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contents differ, and hence it makes sense to compute the average information con-

tent or entropy
∑k

i=1−pi log2 pi . We have encountered entropy before as an �impurity

measure in Section 5.1.

So far I have not really told you anything new, other than that there is a one-to-one

relationship between probability and information content. What really kicks things

off in compression-based learning is a fundamental result from information theory

proved by Claude Shannon in 1948. Shannon’s result says – loosely speaking – that we

cannot transmit information at a rate that surpasses entropy, but we can get arbitrarily

close to the optimal rate by designing clever binary codes. Some well-known codes

include the Shannon–Fanon code and the Huffman code, which are worth looking up

as they employ a simple tree structure to build the code from empirical probabilities.

Even more efficient codes, such as arithmetic coding, combine multiple messages into

a single code word.

Assuming the availability of a near-optimal code, we can now turn the tables and

use information content – or ‘description length’ as it is more commonly called – as

a proxy for probability. One simplified version of the minimum description length

(MDL) principle runs as follows.

Definition 9.1 (Minimum description length principle). Let L(m) denote the length

in bits of a description of model m, and let L(D|m) denote the length in bits of a de-

scription of data D given model m. According to the minimum description length

principle, the preferred model is the one minimising the description length of model

and data given model:

mMDL = argmin
m∈M

(L(m)+L(D|m)) (9.17)

�

In a predictive learning context, ‘description of data given model’ refers to whatever

information we need, in addition to the model and the feature values of the data, to

infer the target labels. If the model is 100% accurate no further information is needed,

so this term essentially quantifies the extent to which the model is incorrect. For ex-

ample, in a uniform two-class setting we need one bit for every data point incorrectly

classified by the model. The term L(m) quantifies the complexity of the model. For

instance, if we are fitting a polynomial to the data we need to encode the degree of the

polynomial as well as its roots, up to a certain resolution. MDL learning thus trades off

accuracy and complexity of a model: the complexity term serves to avoid overfitting

in a similar way to the �regularisation term in ridge regression in Section 7.1 and the

�slack variable term in soft-margin SVMs in Section 7.3.

What encoding to use in order to determine the model complexity L(m) is often

not straightforward and to some extent subjective. This is similar to the Bayesian
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perspective, where we need to define a prior distribution on models. The MDL view-

point offers a concrete way of defining model priors by means of codes.

9.6 Probabilistic models: Summary and further reading

In this chapter we covered a range of machine learning models that are all based on the

idea that features and target variables can be modelled as random variables, giving the

opportunity to explicitly represent and manipulate the level of certainty we have about

those variables. Such models are usually predictive in that they result in a conditional

distribution P (Y |X ) with which Y can be predicted from X . Generative models esti-

mate the joint distribution P (Y , X ) – often through the likelihood P (X |Y ) and the prior

P (Y ) – from which the posterior P (Y |X ) can be obtained, while conditional models

learn the posterior P (Y |X ) directly without spending resources on learning P (X ). The

‘Bayesian’ approach to machine learning is characterised by concentrating on the full

posterior distribution wherever this is feasible, rather than just deriving a maximising

value.

� In Section 9.1 we saw that the normal or Gaussian distribution supports many

useful geometric intuitions, essentially because the negative logarithm of the

Gaussian likelihood can be interpreted as a squared distance. Straight decision

boundaries result from having the same per-class covariance matrices, which

means that models resulting in such linear boundaries, including linear classi-

fiers, linear regression and K -means clustering, can be interpreted from a prob-

abilistic viewpoint that makes their inherent assumptions explicit. Two exam-

ples of this are that the basic linear classifier is Bayes-optimal for uncorrelated,

unit-variance Gaussian features; and least-squares regression is optimal for lin-

ear functions contaminated by Gaussian noise on the target variable.

� Section 9.2 was devoted to different versions of the naive Bayes classifier, which

makes the simplifying assumption that features are independent within each

class. Lewis (1998) gives an overview and history. This model is widely used

in information retrieval and text classification as it is often a good ranker if not a

good probability estimator. While the model that is usually understood as naive

Bayes treats features as categorical or Bernoulli random variables, variants em-

ploying a multinomial model tend to better model the number of occurrences

of words in a document (McCallum and Nigam, 1998). Real-valued features can

be taken into account by either modelling them as normally distributed within

each class, or by non-parametric density estimation – John and Langley (1995)

suggest that the latter gives better empirical results. Webb, Boughton and Wang

(2005) discuss ways of relaxing the strong independence assumptions made by
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naive Bayes. Probability smoothing by means of the m-estimate was introduced

by Cestnik (1990).

� Perhaps paradoxically, I don’t think there is anything particularly ‘Bayesian’ about

the naive Bayes classifier. While it is a generative probabilistic model estimating

the posterior P (Y |X ) through the joint P (Y , X ), in practice the posterior is very

poorly calibrated owing to the unrealistic independence assumptions. The rea-

son naive Bayes is often successful is because of the quality of argmaxY P (Y |X )

rather than the quality of the posterior as such, as analysed by Domingos and

Pazzani (1997). Furthermore, even the use of Bayes’ rule in determining the max-

imising Y can be avoided, as it only serves to transform uncalibrated likelihoods

into uncalibrated posteriors. So my recommendation is to use naive Bayes like-

lihoods as scores on an unknown scale whose decision threshold needs to be

calibrated by means of ROC analysis, as has been discussed several times before.

� In Section 9.3 we looked at the widely used logistic regression model. The ba-

sic idea is to combine a linear decision boundary with logistic calibration, but to

train this in a discriminative fashion by optimising conditional likelihood. So,

rather than modelling the classes as clouds of points and deriving a decision

boundary from those clouds, logistic regression concentrates on areas of class

overlap. It is an instance of the larger class of generalised linear models (Nelder

and Wedderburn, 1972). Jebara (2004) discusses the advantages of discrimina-

tive learning in comparison with generative models. Discriminative learning can

also be applied to sequential data in the form of conditional random fields (Laf-

ferty et al., 2001)

� Section 9.4 presented the Expectation-Maximisation algorithm as a general way

of learning models involving unobserved variables. This general form of EM was

proposed by Dempster, Laird and Rubin (1977) based on a variety of earlier work.

We have seen how it can be applied to Gaussian mixture models to obtain a more

general version of K -means predictive clustering, which is also able to estimate

cluster shapes and sizes. However, this increases the number of parameters of

the model and thus the risk of getting stuck in a non-optimal stationary config-

uration. (Little and Rubin, 1987) is a standard reference for dealing with missing

data.

� Finally, in Section 9.5 we briefly discussed some ideas related to learning as com-

pression. The link with probabilistic modelling is that both seek to model and ex-

ploit the non-random aspects of the data. In a simplified setting, the minimum

description length principle can be derived from Bayes’ rule by taking the nega-

tive logarithm, and states that models minimising the description length of the
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model and of the data given the model should be preferred. The first term quan-

tifies the complexity of the model, and the second term quantifies its accuracy

(as only the model’s errors need to be encoded explicitly). The advantage of the

MDL principle is that encoding schemes are often more tangible and easier to

define than prior distributions. However, not just any encoding will do: as with

their probabilistic counterparts, these schemes need to be justified in the do-

main being modelled. Pioneering work in this area has been done by Solomonoff

(1964a,b); Wallace and Boulton (1968); Rissanen (1978), among others. An excel-

lent introduction and overview is provided by Grünwald (2007).

�



CHAPTER 10

Features

P
REVIOUSLY I REFERRED to features as ‘the workhorses of machine learning’ – it is there-

fore high time to consider them in more detail. Features, also called attributes, are

defined as mappings fi : X →Fi from the instance space X to the feature domain Fi .

We can distinguish features by their domain: common feature domains include real

and integer numbers, but also discrete sets such as colours, the Booleans, and so on.

We can also distinguish features by the range of permissible operations. For example,

we can calculate a group of people’s average age but not their average blood type, so

taking the average value is an operation that is permissible on some features but not

on others. We will take a closer look at different kinds of feature in Section 10.1.

Although many data sets come with pre-defined features, they can be manipulated

in many ways. For example, we can change the domain of a feature by rescaling or

discretisation; we can select the best features from a larger set and only work with the

selected ones; or we can combine two or more features into a new feature. In fact, a

model itself is a way of constructing a new feature that solves the task at hand. Feature

transformations will be investigated in Section 10.2, while feature construction and

selection is the topic of Section 10.3

298
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10.1 Kinds of feature

Consider two features, one describing a person’s age and the other their house num-

ber. Both features map into the integers, but the way we use those features can be quite

different. Calculating the average age of a group of people is meaningful, but an aver-

age house number is probably not very useful! In other words, what matters is not just

the domain of a feature, but also the range of permissible operations. These, in turn,

depend on whether the feature values are expressed on a meaningful scale. Despite

appearances, house numbers are not really integers but ordinals: we can use them to

determine that number 10’s neighbours are number 8 and number 12, but we cannot

assume that the distance between 8 and 10 is the same as the distance between 10

and 12. Because of the absence of a linear scale it is not meaningful to add or subtract

house numbers, which precludes operations such as averaging.

Calculations on features

Let’s take a closer look at the range of possible calculations on features, often referred

to as aggregates or statistics. Three main categories are statistics of central tendency,

statistics of dispersion and shape statistics. Each of these can be interpreted either as a

theoretical property of an unknown population or a concrete property of a given sam-

ple – here we will concentrate on sample statistics.

Starting with statistics of central tendency, the most important ones are

� the mean or average value;

� the median, which is the middle value if we order the instances from lowest to

highest feature value; and

� the mode, which is the majority value or values.

Of these statistics, the mode is the one we can calculate whatever the domain of the

feature: so, for example, we can say that the most frequent blood type in a group of

people is O+. In order to calculate the median, we need to have an ordering on the

feature values: so we can calculate both the mode and the median house number in

a set of addresses.1 In order to calculate the mean, we need a feature expressed on

some scale: most often this will be a linear scale for which we calculate the familiar

arithmetic mean, but Background 10.1 discusses means for some other scales. It is

often suggested that the median tends to lie between the mode and the mean, but there

are plenty of exceptions to this ‘rule’. The famous statistician Karl Pearson suggested a

1If our sample contains an even number of instances, there are two middle values. If the feature has a

scale it is customary to take the mean of those two values as the median; if the feature doesn’t have a scale,

or if it is important that we select a value actually occurring in the sample, we can either select both as the

lower and upper median, or we can make a random choice.
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Imagine a swimmer who swims the same distance d on two different days, taking a sec-

onds one day and b seconds the next. On average, it took her therefore c = (a+b)/2 sec-

onds, with an average speed of d/c = 2d/(a+b). Notice how this average speed is not cal-

culated as the normal or arithmetic mean of the speeds, which would yield (d/a+d/b)/2:

to calculate average speed over a fixed distance we use a different mean called the har-

monic mean. Given two numbers x and y (in our swimming example these are the speeds

on either day, d/a and d/b), the harmonic mean h is defined as

h(x, y)= 2

1/x+1/y
= 2x y

x+ y

Since 1/h(x, y)= (1/x+1/y)/2, we observe that calculating the harmonic mean on a scale

with unit u corresponds to calculating the arithmetic mean on the reciprocal scale with

unit 1/u. In the example, speed with fixed distance is expressed on a scale reciprocal to

the time scale, and since we use the arithmetic mean to average time, we use the harmonic

mean to average speed. (If we average speed over a fixed time interval this is expressed on

the same scale as distance and thus we would use the arithmetic mean.)

A good example of where the harmonic mean is used in machine learning arises when we

average precision and recall of a classifier. Remember that precision is the proportion of

positive predictions that is correct (prec = TP/(TP+FP)), and recall is the proportion of

positives that is correctly predicted (rec = TP/(TP+FN)). Suppose we first calculate the

number of mistakes averaged over the classes: this is the arithmetic mean Fm = (FP+
FN)/2. We can then derive

TP

TP+Fm
= TP

TP+ (FP+FN)/2
= 2TP

(TP+FP)+ (TP+FN)
= 2

1/prec+1/rec

We recognise the last term as the harmonic mean of precision and recall. Since the enu-

merator of both precision and recall is fixed, taking the arithmetic mean of the denomina-

tors corresponds to taking the harmonic mean of the ratios. In information retrieval this

harmonic mean of precision and recall is very often used and called the F-measure.

Yet other means exist for other scales. In music, going from one note to a note one oc-

tave higher corresponds to doubling the frequency. So frequencies f and 4 f are two oc-

taves apart, and it makes sense to take the octave in between with frequency 2 f as their

mean. This is achieved by the geometric mean, which is defined as g (x, y) = �x y . Since

log
�

x y = (log x y)/2 = (log x+ log y)/2 it follows that the geometric mean corresponds to

the arithmetic mean on a logarithmic scale. All these means have in common that the

mean of two values is an intermediate value, and that they can easily be extended to more

than two values.

Background 10.1. On scales and means.
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more specific rule of thumb (with therefore even more exceptions): the median tends

to fall one-third of the way from mean to mode.

The second kind of calculation on features are statistics of dispersion or ‘spread’.

Two well-known statistics of dispersion are the variance or average squared deviation

from the (arithmetic) mean, and its square root, the standard deviation. Variance and

standard deviation essentially measure the same thing, but the latter has the advantage

that it is expressed on the same scale as the feature itself. For example, the variance

of the body weight in kilograms of a group of people is measured in kg2 (kilograms-

squared), whereas the standard deviation is measured in kilograms. The absolute dif-

ference between the mean and the median is never larger than the standard deviation

– this is a consequence of Chebyshev’s inequality, which states that at most 1/k2 of the

values are more than k standard deviations away from the mean.

A simpler dispersion statistic is the difference between maximum and minimum

value, which is called the range. A natural statistic of central tendency to be used

with the range is the midrange point, which is the mean of the two extreme values.

These definitions assume a linear scale but can be adapted to other scales using suit-

able transformations. For example, for a feature expressed on a logarithmic scale, such

as frequency, we would take the ratio of the highest and lowest frequency as the range,

and the harmonic mean of these two extremes as the midrange point.

Other statistics of dispersion include percentiles. The p-th percentile is the value

such that p per cent of the instances fall below it. If we have 100 instances, the 80th per-

centile is the value of the 81st instance in a list of increasing values.2 If p is a multiple of

25 the percentiles are also called quartiles, and if it is a multiple of 10 the percentiles are

also called deciles. Note that the 50th percentile, the 5th decile and the second quartile

are all the same as the median. Percentiles, deciles and quartiles are special cases of

quantiles. Once we have quantiles we can measure dispersion as the distance between

different quantiles. For instance, the interquartile range is the difference between the

third and first quartile (i.e., the 75th and 25th percentile).

Example 10.1 (Percentile plot). Suppose you are learning a model over an in-

stance space of countries, and one of the features you are considering is the gross

domestic product (GDP) per capita. Figure 10.1 shows a so-called percentile plot

of this feature. In order to obtain the p-th percentile, you intersect the line y = p

with the dotted curve and read off the corresponding percentile on the x-axis. In-

dicated in the figure are the 25th, 50th and 75th percentile. Also indicated is the

2Similar to the median there are issues with non-integer ranks, and they can be dealt with in different

ways; however, significant differences do not arise unless the sample size is very small.
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Figure 10.1. Percentile plot of GDP per capita for 231 countries (data obtained from www.

wolframalpha.com by means of the query ‘GDP per capita’).The vertical dotted lines in-

dicate, from left to right: the first quartile ($900); the median ($3600); the mean ($11 284);

andthe third quartile ($14 750). The interquartile range is $13 850, while the standard deviation

is $16 189.

mean (which has to be calculated from the raw data). As you can see, the mean

is considerably higher than the median; this is mainly because of a few countries

with very high GDP per capita. In other words, the mean is more sensitive to out-

liers than the median, which is why the median is often preferred to the mean for

skewed distributions like this one.

You might think that the way I drew the percentile plot is the wrong way around:

surely it would make more sense to have p on the x-axis and the percentiles on the

y-axis? One advantage of drawing the plot this way is that, by interpreting the y-axis

as probabilities, the plot can be read as a cumulative probability distribution: a plot of

P (X ≤ x) against x for a random variable X . For example, the plot shows that P (X ≤μ)

is approximately 0.70, where μ = $11284 is the mean GDP per capita. In other words,

if you choose a random country the probability that its GDP per capita is less than the

average is about 0.70.

Since GDP per capita is a real-valued feature, it doesn’t necessarily make sense to

talk about its mode, since if you measure the feature precisely enough every country

will have a different value. We can get around this by means of a histogram, which

counts the number of feature values in a particular interval or bin.
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Figure 10.2. Histogram of the data from Figure 10.1, with bins of $2000 wide.

Example 10.2 (Histogram). A histogram of the data from Example 10.1 is shown

in Figure 10.2. The left-most bin is the mode, with well over a third of the coun-

tries having a GDP per capita of not more than $2000. This demonstrates that

the distribution is extremely right-skewed (i.e., has a long right tail), resulting in

a mean that is considerably higher than the median.

The skew and ‘peakedness’ of a distribution can be measured by shape statistics

such as skewness and kurtosis. The main idea is to calculate the third and fourth cen-

tral moment of the sample. In general, the k-th central moment of a sample {xi , . . . , xn}

is defined as mk = 1
n

∑n
i=1(xi −μ)k , where μ is the sample mean. Clearly, the first cen-

tral moment is the average deviation from the mean – this is always zero, as the posi-

tive and negative deviations cancel each other out – and the second central moment is

the average squared deviation from the mean, otherwise known as the variance. The

third central moment m3 can again be positive or negative. Skewness is then defined as

m3/σ3, where σ is the sample’s standard deviation. A positive value of skewness means

that the distribution is right-skewed, which means that the right tail is longer than the

left tail. Negative skewness indicates the opposite, left-skewed case. Kurtosis is defined

as m4/σ4. As it can be shown that a normal distribution has kurtosis 3, people often

use excess kurtosis m4/σ4−3 as the statistic of interest. Briefly, positive excess kurtosis

means that the distribution is more sharply peaked than the normal distribution.
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Kind Order Scale Tendency Dispersion Shape

Categorical × × mode n/a n/a

Ordinal
� × median quantiles n/a

Quantitative
� �

mean range, interquartile range,

variance, standard deviation

skewness,

kurtosis

Table 10.1. Kinds of feature, their properties and allowable statistics. Each kind inherits the

statistics from the kinds above it in the table. For instance, the mode is a statistic of central

tendency that can be computed for any kind of feature.

Example 10.3 (Skewness and kurtosis). In the GDP per capita example we can

calculate skewness as 2.12 and excess kurtosis as 2.53. This confirms that the dis-

tribution is heavily right-skewed, and also more sharply peaked than the normal

distribution.

Categorical, ordinal and quantitative features

Given these various statistics we can distinguish three main kinds of feature: those

with a meaningful numerical scale, those without a scale but with an ordering, and

those without either. We will call features of the first type quantitative; they most often

involve a mapping into the reals (another term in common use is ‘continuous’). Even

if a feature maps into a subset of the reals, such as age expressed in years, the various

statistics such as mean or standard deviation still require the full scale of the reals.

Features with an ordering but without scale are called ordinal features. The domain

of an ordinal feature is some totally ordered set, such as the set of characters or strings.

Even if the domain of a feature is the set of integers, denoting the feature as ordinal

means that we have to dispense with the scale, as we did with house numbers. Another

common example are features that express a rank order: first, second, third, and so

on. Ordinal features allow the mode and median as central tendency statistics, and

quantiles as dispersion statistics.

Features without ordering or scale are called categorical features (or sometimes

‘nominal’ features). They do not allow any statistical summary except the mode. One

subspecies of the categorical features is the Boolean feature, which maps into the truth

values true and false. The situation is summarised in Table 10.1.

Models treat these different kinds of feature in distinct ways. First, consider

tree models such as decision trees. A split on a categorical feature will have as many
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children as there are feature values. Ordinal and quantitative features, on the other

hand, give rise to a binary split, by selecting a value v0 such that all instances with a

feature value less than or equal to v0 go to one child, and the remaining instances to

the other child. It follows that tree models are insensitive to the scale of quantitative

features. For example, whether a temperature feature is measured on the Celsius scale

or on the Fahrenheit scale will not affect the learned tree. Neither will switching from

a linear scale to a logarithmic scale have any effect: the split threshold will simply be

log v0 instead of v0. In general, tree models are insensitive to monotonic transforma-

tions on the scale of a feature, which are those transformations that do not affect the

relative order of the feature values. In effect, tree models ignore the scale of quantitative

features, treating them as ordinal. The same holds for rule models.

Now let’s consider the naive Bayes classifier. We have seen that this model works by

estimating a likelihood function P (X |Y ) for each feature X given the class Y . For cate-

gorical and ordinal features with k values this involves estimating P (X = v1|Y ), . . . ,P (X =
vk |Y ). In effect, ordinal features are treated as categorical ones, ignoring the order.

Quantitative features cannot be handled at all, unless they are discretised into a finite

number of bins and thus converted to categoricals. Alternatively, we could assume a

parametric form for P (X |Y ), for instance a normal distribution. We will return to this

later in this chapter when we discuss feature calibration.

While naive Bayes only really handles categorical features, many geometric models

go in the other direction: they can only handle quantitative features. Linear models

are a case in point: the very notion of linearity assumes a Euclidean instance space in

which features act as Cartesian coordinates, and thus need to be quantitative. Distance-

based models such as k-nearest neighbour and K -means require quantitative features

if their distance metric is Euclidean distance, but we can adapt the distance metric to

incorporate categorical features by setting the distance to 0 for equal values and 1 for

unequal values (the �Hamming distance as defined in Section 8.1). In a similar vein,

for ordinal features we can count the number of values between two feature values (if

we encode the ordinal feature by means of integers, this would simply be their differ-

ence). This means that distance-based methods can accommodate all feature types

by using an appropriate distance metric. Similar techniques can be used to extend

support vector machines and other kernel-based methods to categorical and ordinal

features.

Structured features

It is usually tacitly assumed that an instance is a vector of feature values. In other

words, the instance space is a Cartesian product of d feature domains: X =F1× . . .×
Fd . This means that there is no other information available about an instance apart

from the information conveyed by its feature values. Identifying an instance with its
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vector of feature values is what computer scientists call an abstraction, which is the

result of filtering out unnecessary information. Representing an e-mail as a vector of

word frequencies is an example of an abstraction.

However, sometimes it is necessary to avoid such abstractions, and to keep more

information about an instance than can be captured by a finite vector of feature values.

For example, we could represent an e-mail as a long string; or as a sequence of words

and punctuation marks; or as a tree that captures the HTML mark-up; and so on. Fea-

tures that operate on such structured instance spaces are called structured features.

Example 10.4 (Structured features). Suppose an e-mail is represented as a se-

quence of words. This allows us to define, apart from the usual word frequency

features, a host of other features, including:

� whether the phrase ‘machine learning’ – or any other set of consecutive

words – occurs in the e-mail;

� whether the e-mail contains at least eight consecutive words in a language

other than English;

� whether the e-mail is palindromic, as in ‘Degas, are we not drawn onward,

we freer few, drawn onward to new eras aged?’

Furthermore, we could go beyond properties of single e-mails and express rela-

tions such as whether one e-mail is quoted in another e-mail, or whether two

e-mails have one or more passages in common.

Structured features are not unlike queries in a database query language such as

SQL or a declarative programming language such as Prolog. In fact, we have already

seen examples of structured features in Section 6.4 when we looked at learning Prolog

clauses such as the following:

fish(X):-bodyPart(X,Y).

fish(X):-bodyPart(X,pairOf(Z)).

The first clause has a single structured feature in the body which tests for the existence

of some unspecified body part, while the second clause has another structured feature

testing for the existence of a pair of unspecified body parts. The defining characteristic

of structured features is that they involve local variables that refer to objects other than

the instance itself. In a logical language such as Prolog it is natural to interpret local

variables as existentially quantified, as we just did. However, it is equally possible to

use other forms of aggregation over local variables: e.g., we can count the number of

body parts (or pairs of body parts) an instance has.
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↓ to, from→ Quantitative Ordinal Categorical Boolean

Quantitative normalisation calibration calibration calibration

Ordinal discretisation ordering ordering ordering

Categorical discretisation unordering grouping

Boolean thresholding thresholding binarisation

Table 10.2. An overview of possible feature transformations. Normalisation and calibration

adapt the scale of quantitative features, or add a scale to features that don’t have one. Ordering

adds or adapts the order of feature values without reference to a scale. The other operations

abstract away from unnecessary detail, either in a deductive way (unordering, binarisation) or

by introducing new information (thresholding, discretisation).

Structured features can be constructed either prior to learning a model, or simul-

taneously with it. The first scenario is often called propositionalisation because the

features can be seen as a translation from first-order logic to propositional logic with-

out local variables. The main challenge with propositionalisation approaches is how

to deal with combinatorial explosion of the number of potential features. Notice that

features can be logically related: e.g., the second clause above covers a subset of the

instances covered by the first one. It is possible to exploit this if structured feature con-

struction is integrated with model building, as in inductive logic programming.

10.2 Feature transformations

Feature transformations aim at improving the utility of a feature by removing, chang-

ing or adding information. We could order feature types by the amount of detail they

convey: quantitative features are more detailed than ordinal ones, followed by categor-

ical features, and finally Boolean features. The best-known feature transformations are

those that turn a feature of one type into another of the next type down this list. But

there are also transformations that change the scale of quantitative features, or add a

scale (or order) to ordinal, categorical and Boolean features. Table 10.2 introduces the

terminology we will be using.

The simplest feature transformations are entirely deductive, in the sense that they

achieve a well-defined result that doesn’t require making any choices. Binarisation

transforms a categorical feature into a set of Boolean features, one for each value of

the categorical feature. This loses information since the values of a single categorical

feature are mutually exclusive, but is sometimes needed if a model cannot handle more

than two feature values. Unordering trivially turns an ordinal feature into a categorical

one by discarding the ordering of the feature values. This is often required since most

learning models cannot handle ordinal features directly. An interesting alternative that
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Figure 10.3. (left) Coverage curve obtained by ranking countries on decreasing GDP per capita,

using 23 Euro countries as the positive class. The orange split sets the threshold equal to the

mean, selecting 19 Euro countries and 49 non-Euro countries. The green split sets the threshold

equal to the median, selecting 21 Euro countries and 94 non-Euro countries. The red points are

on the convex hull of the coverage curve and indicate potentially optimal splits when the class

label is taken into account. (right) Coverage curve of the same feature, using 50 countries in

the Americas as the positive class. The red splits indicate potentially optimal thresholds with

relatively many positives above the threshold, while the green splits indicate potentially optimal

thresholds with relatively many positives below the threshold.

we will explore below is to add a scale to the feature by means of calibration.

In the remainder of this section we consider feature transformations that add in-

formation, the most important of which are discretisation and calibration.

Thresholding and discretisation

Thresholding transforms a quantitative or an ordinal feature into a Boolean feature by

finding a feature value to split on. I briefly alluded to this in Chapter 5 as a way to split

on quantitative features in decision trees. Concretely, let f : X → R be a quantitative

feature and let t ∈ R be a threshold, then ft : X → {true, false} is a Boolean feature

defined by ft (x) = true if f (x) ≥ t and ft (x) = false if f (x) < t . We can choose such

thresholds in an unsupervised or a supervised way.

Example 10.5 (Unsupervised and supervised thresholding). Consider the GDP

per capita feature plotted in Figure 10.1 again. Without knowing how this feature

is to be used in a model, the most sensible thresholds are the statistics of central

tendency such as the mean and the median. This is referred to as unsupervised

thresholding.
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In a supervised learning setting we can do more. For example, suppose we

want to use the GDP per capita as a feature in a decision tree to predict whether a

country is one of the 23 countries that use the Euro as their official currency (or as

one of their currencies). Using the feature as a ranker, we can construct a cover-

age curve (Figure 10.3 (left)). We see that for this feature the mean is not the most

obvious threshold, as it splits right in the middle of a run of negatives. A better

split is obtained at the start of that run of negatives, or at the end of the follow-

ing run of positives, indicated by the red points at either end of the mean split.

More generally, any point on the convex hull of the coverage curve represents a

candidate threshold; which one to choose is informed by whether we put more

value on picking out positives or negatives. As it happens in this example, the

median threshold is on the convex hull, but this cannot be guaranteed in gen-

eral as, by definition, unsupervised thresholding methods select the threshold

independently from the target.

Figure 10.3 (right) shows the same feature with a different target: whether a

country is in the Americas. We see that part of the curve is below the ascending

diagonal, indicating that, in comparison with the whole data set, the initial seg-

ment of the ranking contains a smaller proportion of American countries. This

means that potentially useful thresholds can also be found on the lower convex

hull.

In summary, unsupervised thresholding typically involves calculating some statistic

over the data, whereas supervised thresholding requires sorting the data on the fea-

ture value and traversing down this ordering to optimise a particular objective func-

tion such as information gain. Non-optimal split points could be filtered out by means

of constructing the upper and lower convex hull, but in practice this is unlikely to be

more efficient computationally than a straightforward sweep over the sorted instances.

If we generalise thresholding to multiple thresholds we arrive at one of the most

commonly used non-deductive feature transformations. Discretisation transforms a

quantitative feature into an ordinal feature. Each ordinal value is referred to as a bin

and corresponds to an interval of the original quantitative feature. Again, we can dis-

tinguish between supervised and unsupervised approaches. Unsupervised discretisa-

tion methods typically require one to decide the number of bins beforehand. A simple

method that often works reasonably well is to choose the bins so that each bin has ap-

proximately the same number of instances: this is referred to as equal-frequency dis-

cretisation. If we choose two bins then this method coincides with thresholding on the

median. More generally, the bin boundaries are quantiles: for instance, with 10 bins

the bin boundaries of equal-width discretisation are deciles. Another unsupervised
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discretisation method is equal-width discretisation, which chooses the bin boundaries

so that each interval has the same width. The interval width can be established by

dividing the feature range by the number of bins if the feature has upper and lower

limits; alternatively, we can take the bin boundaries at an integer number of standard

deviations above and below the mean. An interesting alternative is to treat feature dis-

cretisation as a univariate clustering problem. For example, in order to generate K bins

we can uniformly sample K initial bin centres and run K -means until convergence. We

can alternatively use any of the other clustering methods discussed in Chapter 8: K -

medoids, partitioning around medoids and hierarchical agglomerative clustering.

Switching now to supervised discretisation methods, we can distinguish between

top–down or divisive discretisation methods on the one hand, and bottom–up or ag-

glomerative discretisation methods on the other. Divisive methods work by progres-

sively splitting bins, whereas agglomerative methods proceed by initially assigning each

instance to its own bin and successively merging bins. In either case an important role

is played by the stopping criterion, which decides whether a further split or merge is

worthwhile. We give an example of each strategy. A natural generalisation of thresh-

olding leads to a top–down recursive partitioning algorithm (Algorithm 10.1). This dis-

cretisation algorithm finds the best threshold according to some scoring function Q,

and proceeds to recursively split the left and right bins. One scoring function that is

often used is information gain.

Example 10.6 (Recursive partitioning using information gain). Consider the

following feature values, which are ordered on increasing value for convenience.

Instance Value Class

e1 −5.0 �
e2 −3.1 ⊕
e3 −2.7 �
e4 0.0 �
e5 7.0 �
e6 7.1 ⊕
e7 8.5 ⊕
e8 9.0 �
e9 9.0 ⊕
e10 13.7 �
e11 15.1 �
e12 20.1 �

This feature gives rise to the following ranking: �⊕���⊕⊕[�⊕]���, where the

square brackets indicate a tie between instances e8 and e9. The corresponding
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Figure 10.4. (left) A coverage curve visualising the ranking of four positive and eight negative

examples by a feature to be discretised. The curved lines are information gain isometrics through

possible split points; the solid isometric indicates the best split [4+,5−][0+,3−] according to

information gain. (middle) Recursive partitioning proceeds to split the segment [4+,5−] into

[1+,4−][3+,1−]. (right) If we stop here, the blue curve visualises the discretised (but still ordinal)

feature.

coverage curve is depicted in Figure 10.4. Tracing information gain isometrics

through each possible split, we see that the best split is �⊕���⊕⊕[�⊕]|���.

Repeating the process once more gives the discretisation �⊕���|⊕⊕[�⊕]|���.

Clearly, we can stop the recursive partitioning algorithm when the empirical prob-

abilities are the same across the ranking; this has pure bins and bins with a constant

feature value as special cases. With this stopping criterion, the algorithm will success-

fully identify all straight line segments in the ranking. In fact, it is not hard to see

that this holds true even if we change the scoring function – the split points may be

found in a different order, but the end result will be the same. In practice more aggres-

sive stopping criteria are used, which does mean that the end result depends on the

Algorithm 10.1: RecPart(S, f ,Q) – supervised discretisation by means of recursive

partitioning.

Input : set of labelled instances S ranked on feature values f (x); scoring

function Q.

Output : sequence of thresholds t1, . . . , tk−1.

1 if stopping criterion applies then return ∅;

2 Split S into Sl and Sr using threshold t that optimises Q ;

3 Tl = RecPart(Sl , f ,Q);

4 Tr = RecPart(Sr , f ,Q);

5 return Tl ∪ {t }∪Tr ;
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Algorithm 10.2: AggloMerge(S, f ,Q) – supervised discretisation by means of ag-

glomerative merging.

Input : set of labelled instances S ranked on feature values f (x); scoring

function Q.

Output : sequence of thresholds.

1 initialise bins to data points with the same scores;

2 merge consecutive pure bins ; // optional optimisation

3 repeat

4 evaluate Q on consecutive bin pairs;

5 merge the pairs with best Q (unless they invoke the stopping criterion);

6 until no further merges are possible;

7 return thresholds between bins;

scoring function. For example, in Figure 10.4 we see that the split �|[⊕�]⊕⊕���⊕⊕
has the second-highest information gain but ends up not being chosen at all, while

with a different scoring function it might have been chosen in the first round. One of

the most popular stopping criteria applies a minimum description length argument to

decide whether a given bin should be split further.

It should be noted that the data set in Example 10.6 is probably so small that the

stopping criterion will kick in straight away and recursive partitioning will be unable

to go beyond a single bin. More generally, this kind of discretisation tends to be fairly

conservative. For example, on the Euro data in Figure 10.3 (left) recursive partitioning

produces two bins, selecting 20 Euro countries and 53 non-Euro countries (the red

point in between the mean and median splits). On the American countries data in

Figure 10.3 (right) we again obtain two bins, corresponding to the third red point from

the right.

An algorithm for bottom–up agglomerative merging is given in Algorithm 10.2. Again

the algorithm can take various choices for the scoring function and the stopping crite-

rion: a popular choice is to use the χ2 statistic for both.

Example 10.7 (Agglomerative merging using χ2). We continue Example 10.6.

Algorithm 10.2 initialises the bins to �|⊕|���|⊕⊕|[�⊕]|���. We illustrate the

calculation of the χ2 statistic for the last two bins. We construct the following

contingency table:
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Left bin Right bin

⊕ 1 0 1

� 1 3 4

2 3 5

At the basis of the χ2 statistic lies a comparison of these observed frequencies

with expected frequencies obtained from the row and column marginals. For

example, the marginals say that the top row contains 20% of the total mass and

the left column 40%; so if rows and columns were statistically independent we

would expect 8% of the mass – or 0.4 of the five instances – in the top-left cell.

Following a clockwise direction, the expected frequencies for the other cells are

0.6, 2.4 and 1.6. If the observed frequencies are close to the expected ones, this

suggests that these two bins are candidates for merging since the split appears to

have no bearing on the class distribution.

The χ2 statistic sums the squared differences between the observed and ex-

pected frequencies, each term normalised by the expected frequency:

χ2 = (1−0.4)2

0.4
+ (0−0.6)2

0.6
+ (3−2.4)2

2.4
+ (1−1.6)2

1.6
= 1.88

Going left-to-right through the other pairs of consecutive bins, the χ2 values are

2, 4, 5 and 1.33 (there’s an easy way to calculate the χ2 value for two pure bins,

which I’ll leave you to discover). This tells us that the fourth and fifth bin are first

to be merged, leading to �|⊕|���|⊕⊕[�⊕]|���. We then recompute the χ2 val-

ues ( in fact, only those involving the newly merged bin need to be re-computed),

yielding 2, 4, 3.94 and 3.94. We now merge the first two bins, giving the partition

�⊕|���|⊕⊕[�⊕]|���. This changes the first χ2 value to 1.88, so we again merge

the first two bins, arriving at �⊕���|⊕⊕[�⊕]|��� (the same three bins as in Ex-

ample 10.6).

In agglomerative discretisation the stopping criterion usually takes the form of a

simple threshold on the scoring function. In the case of the χ2 statistic, the thresh-

old can be derived from the p-value associated with the χ2 distribution, which is the

probability of observing a χ2 value above the threshold if the two variables are actually

independent. For two classes (i.e., one degree of freedom) and a p-value of 0.10 the χ2

threshold is 2.71, which in our example means that we stop at the above three bins. For

a lower p-value of 0.05 the χ2 threshold is 3.84, which means that we eventually merge

all the bins.
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Notice that both top–down and bottom–up supervised discretisation bear some

resemblance to algorithms we have seen previously: recursive partitioning shares the

divide-and-conquer nature of the �decision tree training algorithm (Algorithm 5.1 on

p.132), and agglomerative discretisation by merging consecutive bins is related to

�hierarchical agglomerative clustering (Algorithm 8.4 on p.255). It is also worth men-

tioning that, although our examples were predominantly drawn from binary classifi-

cation, most methods can handle more than two classes without complication.

Normalisation and calibration

Thresholding and discretisation are feature transformations that remove the scale of a

quantitative feature. We now turn our attention to adapting the scale of a quantitative

feature, or adding a scale to an ordinal or categorical feature. If this is done in an un-

supervised fashion it is usually called normalisation, whereas calibration refers to su-

pervised approaches taking in the (usually binary) class labels. Feature normalisation

is often required to neutralise the effect of different quantitative features being mea-

sured on different scales. If the features are approximately normally distributed, we

can convert them into �z-scores (Background 9.1 on p.267) by centring on the mean

and dividing by the standard deviation. In certain cases it is mathematically more con-

venient to divide by the variance instead, as we have seen in Section 7.1. If we don’t

want to assume normality we can centre on the median and divide by the interquartile

range.

Sometimes feature normalisation is understood in the stricter sense of expressing

the feature on a [0,1] scale. This can be achieved in various ways. If we know the fea-

ture’s highest and lowest values h and l , then we can simply apply the linear scaling

f �→ ( f − l )/(h− l ). We sometimes have to guess the value of h or l , and truncate any

value outside [l ,h]. For example, if the feature measures age in years, we may take

l = 0 and h = 100, and truncate any f > h to 1. If we can assume a particular dis-

tribution for the feature, then we can work out a transformation such that almost all

feature values fall in a certain range. For instance, we know that more than 99% of the

probability mass of a normal distribution falls within ±3σ of the mean, where σ is the

standard deviation, so the linear scaling f �→ ( f −μ)/6σ+1/2 virtually removes the need

for truncation.

Feature calibration is understood as a supervised feature transformation adding a

meaningful scale carrying class information to arbitrary features. This has a number

of important advantages. For instance, it allows models that require scale, such as lin-

ear classifiers, to handle categorical and ordinal features. It also allows the learning

algorithm to choose whether to treat a feature as categorical, ordinal or quantitative.

We will assume a binary classification context, and so a natural choice for the cali-

brated feature’s scale is the posterior probability of the positive class, conditioned on
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the feature’s value. This has the additional advantage that models that are based on

such probabilities, such as naive Bayes, do not require any additional training once

the features are calibrated, as we shall see. The problem of feature calibration can

thus be stated as follows: given a feature F : X → F , construct a calibrated feature

F c : X → [0,1] such that F c(x) estimates the probability F c(x)= P (⊕|v), where v = F (x)

is the value of the original feature for x.

For categorical features this is as straightforward as collecting relative frequencies

from a training set.

Example 10.8 (Calibration of categorical features). Suppose we want to pre-

dict whether or not someone has diabetes from categorical features including

whether the person is obese or not, whether he or she smokes, and so on.

We collect some statistics which tell us that 1 in every 18 obese persons has

diabetes while among non-obese people this is 1 in 55 (data obtained from

www.wolframalpha.com with the query ‘diabetes’). If F (x) = 1 for person

x who is obese and F (y) = 0 for person y who isn’t, then the calibrated feature

values are F c(x)= 1/18= 0.055 and F c(y)= 1/55= 0.018.

In fact, it would be better to compensate for the non-uniform class distribution, in

order to avoid over-emphasising the class prior, which is better taken into account in

the decision rule. This can be achieved as follows. If m of n obese people have diabetes,

then this corresponds to a posterior odds of m/(n−m) or a likelihood ratio of m/c(n−
m), where c is the prior odds of having diabetes (since posterior odds is likelihood

ratio times prior odds). Working with the likelihood ratio is equivalent to assuming a

uniform class distribution. Converting the likelihood ratio into a probability gives

F c(x)=
m

c(n−m)
m

c(n−m) +1
= m

m+c(n−m)

In our example, if the prior odds of having diabetes is c = 1/48, then F c(x) = 1/(1+
17/48) = 48/(48+ 17) = 0.74. The extent to which this probability is more than 1/2

quantifies the extent to which obese people are more likely than average to have dia-

betes. For non-obese people the probability is 1/(1+54/48) = 48/(48+54) = 0.47, so

they are slightly less likely than average to have diabetes. Keep in mind also that it is

usually a good idea to smooth these probability estimates by means of the Laplace cor-

rection, which adds 1 to m and 2 to n. This leads to the final expression for calibrating

a categorical feature:

F c(x)= m+1

m+1+c(n−m+1)
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Ordinal and quantitative features can be discretised and then calibrated as cate-

gorical features. In the remainder of this section we look at calibration methods that

maintain the ordering of the feature. For example, suppose we want to use body weight

as an indicator for diabetes. A calibrated weight feature attaches a probability to every

weight, such that these probabilities are non-decreasing with weight. This is related to

our discussion of �calibrating classifier scores in Section 7.4, as those calibrated prob-

abilities should likewise takes the ranking of the classifier’s predictions into account. In

fact, the two approaches to classifier calibration – by employing the logistic function

and by constructing the ROC convex hull – are directly applicable to feature calibration,

since a quantitative feature can simply be treated as a univariate scoring classifier.

We briefly reiterate the main points of logistic calibration, but with a slight change

in notation. Let F : X → R be a quantitative feature with class means μ⊕ and μ� and

variance σ2. Assuming the feature is normally distributed within each class with the

same variance, we can express the likelihood ratio of a feature value v as

LR(v)= P (v |⊕)

P (v |�)
= exp

(−(v −μ⊕)2+ (v −μ�)2

2σ2

)

= exp

(
μ⊕−μ�

σ

v − (μ⊕+μ�)/2

σ

)
= exp

(
d ′z
)

where d ′ = (μ⊕ −μ�)/σ is the difference between the means in proportion to the stan-

dard deviation, which is known as d-prime in signal detection theory; and z = (v−μ)/σ

is the z-score associated with v (notice we take the mean as μ = (μ⊕ +μ�)/2 to simu-

late an equal class distribution). Again we work directly with the likelihood ratio to

neutralise the effect of a non-uniform class distribution, and we obtain the calibrated

feature value as

F c(x)= LR(F (x))

1+LR(F (x))
= exp

(
d ′z(x)

)
1+exp(d ′z(x))

You may recognise the logistic function we discussed in Chapter 7 (see Figure 7.11 on

p.222).

In essence, logistic feature calibration performs the following steps.

1. Estimate the class means μ⊕ and μ� and the standard deviation σ.

2. Transform F (x) into z-scores z(x), making sure to use μ = (μ⊕ +μ�))/2 as the

feature mean.

3. Rescale the z-scores to F d(x)= d ′z(x) with d ′ = (μ⊕−μ�)/σ.

4. Apply a sigmoidal transformation to F d(x) to give calibrated probabilities

F c(x)= exp
(
F d(x)

)
1+exp(F d(x)) .

Sometimes it is preferred to work directly with F d(x), as it is expressed on a scale lin-

early related to the original feature’s scale, and the Gaussian assumption implies that
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Figure 10.5. (left) Two-class Gaussian data. The middle line is the decision boundary learned

by the basic linear classifier; the other two are parallel lines through the class means. (middle)

Logistic calibration to log-odds space is a linear transformation; assuming unit standard devia-

tions, the basic linear classifier is now the fixed line F d
1 (x)+F d

2 (x) = 0. (right) Logistic calibra-

tion to probability space is a non-linear transformation that pushes data away from the decision

boundary.

we expect that scale to be additive. For example, distance-based models expect addi-

tive features in order to calculate Euclidean distance. In contrast, the scale of F c is mul-

tiplicative. Notice that the two are interdefinable as F d(x)= ln F c(x)
1−F c(x) = lnF c(x)−ln(1−

F c(x)). I will call the feature space spanned by F d log-odds space, since exp
(
F d(x)

) =
LR(x) and the likelihood ratio is equal to the odds if we’re assuming a uniform class

prior. Calibrated features F c live in probability space.

Example 10.9 (Logistic calibration of two features). Logistic feature calibra-

tion is illustrated in Figure 10.5. I generated two sets of 50 points by sampling

bivariate Gaussians with identity covariance matrix, centred at (2,2) and (4,4).

I then constructed the basic linear classifier as well as two parallel decision

boundaries through the class means. Tracing these three lines in calibrated

space will help us understand feature calibration.

In the middle figure we see the transformed data in log-odds space, which

is clearly a linear rescaling of the axes. The basic linear classifier is now the line

F d
1 (x)+F d

2 (x)= 0 through the origin. In other words, for this simple classifier fea-

ture calibration has removed the need for further training: instead of fitting a de-

cision boundary to the data, we have fitted the data to a fixed decision boundary!

(I should add that I cheated very slightly here, as I fixed σ = 1 in the calibration

process – had I estimated each feature’s standard deviation from the data, the

decision boundary would most likely have had a slightly different slope.)

On the right we see the transformed data in probability space, which clearly

has a non-linear relationship with the other two feature spaces. The basic linear
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classifier is still linear in this space, but actually this is no longer true for more

than two features. To see this, note that F c
1 (x)+F c

2 (x)= 1 can be rewritten as

exp
(
F d

1 (x)
)

1+exp
(
F d

1 (x)
) + exp

(
F d

2 (x)
)

1+exp
(
F d

2 (x)
) = 1

which can be simplified to exp
(
F d

1 (x)
)

exp
(
F d

2 (x)
) = 1 and hence to F d

1 (x) +
F d

2 (x) = 0. However, if we add a third feature not all cross-terms cancel and we

obtain a non-linear boundary .

The log-odds representation does hold an interest in another respect. An arbitrary

linear decision boundary in log-odds space is represented by
∑

i wi F d
i (x) = t . Taking

natural logarithms this can be rewritten as

exp

(∑
i

wi F d
i (x)

)
=∏

i
exp
(
wi F d

i (x)
)
=∏

i

(
exp
(
F d

i (x)
))wi =∏

i
LRi (x)wi = exp(t )= t ′

This exposes a connection with the naive Bayes models discussed in Section 9.2, whose

decision boundaries are also defined as products of likelihood ratios for individual fea-

tures. The basic naive Bayes model has wi = 1 for all i and t ′ = 1, which means that

fitting data to a fixed linear decision boundary in log-odds space by means of feature

calibration can be understood as training a naive Bayes model. Changing the slope of

the decision boundary corresponds to introducing non-unit feature weights, which is

similar to the way feature weights arose in the multinomial naive Bayes model.

It is instructive to investigate the distribution of the calibrated feature a bit more

(I will omit the technical details). Assuming the uncalibrated distributions were two

Gaussian bumps, what do the calibrated distributions look like? We have already seen

that calibrated data points are pulled away from the decision boundary, so we would

expect the peaks of the calibrated distributions to be closer to their extreme values.

How much closer depends solely on d ′; Figure 10.6 depicts the calibrated distributions

for various values of d ′.
We move on to isotonic calibration, a method that requires order but ignores scale

and can be applied to both ordinal and quantitative features. We essentially use the

feature as a univariate ranker, and construct its ROC curve and convex hull to obtain a

piecewise-constant calibration map. Suppose we have an ROC curve, and suppose the

i -th segment of the curve involves ni training examples, out of which mi are positives.

The corresponding ROC segment has slope li = mi /(c(ni −mi )), where c is the prior

odds. Suppose first the ROC curve is convex: i.e., i < j implies li ≥ l j . In that case,

we can use the same formula as for categorical features to obtain a calibrated feature
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Figure 10.6. Per-class distributions of a logistically calibrated feature for different values of d ′,
the distance between the uncalibrated class means in proportion to the feature’s standard de-

viation. The red and blue curves depict the distributions for the positive and negative class

for a feature whose means are one standard deviation apart (d ′ = 1). The other curves are for

d ′ ∈ {0.5,1.4,1.8}.

value:

vc
i =

mi +1

mi +1+c(ni −mi +1)
(10.1)

As before, this achieves both probability smoothing through Laplace correction and

compensation for non-uniform class distributions. If the ROC curve is not convex,

there exist i < j such that li < l j . Assuming we want to maintain the original feature

ordering, we first construct the convex hull of the ROC curve. The effect of this is that

we join adjacent segments in the ROC curve that are part of a concavity, until no con-

cavities remain. We recalculate the segments and assign calibrated feature values as in

Equation 10.1.

Example 10.10 (Isotonic feature calibration). The following table gives sample

values of a weight feature in relation to a diabetes classification problem. Figure

10.7 shows the ROC curve and convex hull of the feature and the calibration map

obtained by isotonic calibration.
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Figure 10.7. (left) ROC curve and convex hull of an uncalibrated feature. Calibrated feature

values are obtained from the proportion of positives in each segment of the ROC convex hull.

(right) The corresponding piecewise-constant calibration map, which maps the uncalibrated

feature values on the x-axis to the calibrated feature values on the y-axis.

Weight Diabetes? Calibrated weight Weight Diabetes? Calibrated weight

130 ⊕ 0.83 81 � 0.43
127 ⊕ 0.83 80 ⊕ 0.43
111 ⊕ 0.83 79 � 0.43
106 ⊕ 0.83 77 ⊕ 0.43
103 � 0.60 73 � 0.40
96 ⊕ 0.60 68 � 0.40
90 ⊕ 0.60 67 ⊕ 0.40
86 � 0.50 64 � 0.20
85 ⊕ 0.50 61 � 0.20
82 � 0.43 56 � 0.20

For example, a weight of 80 kilograms is calibrated to 0.43, meaning that three out

of seven people in that weight interval have diabetes (after Laplace correction).

Example 10.11 gives a bivariate illustration. As is clearly visible, for quantitative

features the process amounts to supervised discretisation of the feature values, which

means that many points are mapped to the same point in calibrated space. This is

different from logistic calibration, which is invertible.

Example 10.11 (Isotonic calibration of two features). Figure 10.8 shows the re-

sult of isotonic calibration on the same data as in Example 10.9, both in log-odds
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Figure 10.8. (left) The data from Figure 10.5, with grid lines indicating the discretisation ob-

tained by isotonic feature calibration. (middle) Isotonically calibrated data in log-odds space.

(right) Isotonically calibrated data in probability space.

space and in probability space. Because of the discrete nature of isotonic cali-

bration, even the transformation to log-odds space is no longer linear: the basic

linear classifier becomes a series of axis-parallel line segments. This is also true

in the opposite direction: if we imagine a linear decision boundary in log-odds

space or in probability space, this maps to a decision boundary following the dot-

ted lines in the original feature space. Effectively, isotonic feature calibration has

changed the linear grading model into a grouping model.

In summary, isotonic feature calibration performs the following steps.

1. Sort the training instances on feature value and construct the ROC curve. The

sort order is chosen such that the ROC curve has AUC≥ 1/2.

2. Construct the convex hull of this curve, and count the number of positives mi

and the total number of instances ni in each segment of the convex hull.

3. Discretise the feature according to the convex hull segments, and associate a cal-

ibrated feature value vc
i =

mi+1
mi+1+c(ni−mi+1) with each segment.

4. If an additive scale is required, use vd
i = ln

vc
i

1−vc
i
= ln vc

i − ln(1− vc
i ).

Incomplete features

At the end of this section on feature transformations we briefly consider what to do if

we don’t know a feature’s value for some of the instances. We encountered this situa-

tion in Example 1.2 on p.26, where we discussed how to classify an e-mail if we didn’t

know whether it contained one of the vocabulary words or not. Probabilistic models
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handle this rather gracefully by taking a weighted average over all possible values of

the feature:

P (Y |X )=∑
z

P (Y , Z = z|X )=∑
z

P (Y |X , Z = z)P (Z = z)

Here, Y is the target variable as usual, X stands for the features that are observed for the

instance to be classified, while Z are the features that are unobserved at classification

time. The distribution P (Z ) can be obtained from the trained model, at least for a

generative model – if our model is discriminative we need to estimate P (Z ) separately.

Missing feature values at training time are trickier to handle. First of all, the very

fact that a feature value is missing may be correlated with the target variable. For ex-

ample, the range of medical tests carried out on a patient is likely to depend on their

medical history. For such features it may be best to have a designated ‘missing’ value

so that, for instance, a tree model can split on it. However, this would not work for,

say, a linear model. In such cases we can complete the feature by ‘filling in’ the miss-

ing values, a process known as imputation. For instance, in a classification problem

we can calculate the per-class means, medians or modes over the observed values of

the feature and use this to impute the missing values. A somewhat more sophisticated

method takes feature correlation into account by building a predictive model for each

incomplete feature and uses that model to ‘predict’ the missing value. It is also possible

to invoke the �Expectation-Maximisation algorithm (Section 9.4), which goes roughly

as follows: assuming a multivariate model over all features, use the observed values for

maximum-likelihood estimation of the model parameters, then derive expectations for

the unobserved feature values and iterate.

10.3 Feature construction and selection

The previous section on feature transformation makes it clear that there is a lot of scope

in machine learning to play around with the original features given in the data. We can

take this one step further by constructing new features from several original features.

A simple example of this can be used to improve the �naive Bayes classifier discussed

in Section 9.2. Remember that in text classification applications we have a feature for

every word in the vocabulary, which disregards not only the order of words but also

their adjacency. This means that sentences such as ‘they write about machine learn-

ing’ and ‘they are learning to write about a machine’ will be virtually indistinguishable,

even though the former is about machine learning and the latter is not. It may there-

fore sometimes be necessary to include phrases consisting of multiple words in the

dictionary and treat them as single features. In the information retrieval literature, a

multi-word phrase is referred to as an n-gram (unigram, bigram, trigram and so on).

Taking this idea one step further, we can construct a new feature from two Boolean

or categorical features by forming their Cartesian product. For example, if we have
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one feature Shape with values Circle, Triangle and Square, and another feature Colour

with values Red, Green and Blue, then their Cartesian product would be the feature

(Shape,Colour) with values (Circle,Red), (Circle,Green), (Circle,Blue), (Triangle,Red),

and so on. The effect that this would have depends on the model being trained. Con-

structing Cartesian product features for a naive Bayes classifier means that the two

original features are no longer treated as independent, and so this reduces the strong

bias that naive Bayes models have. This is not the case for tree models, which can al-

ready distinguish between all possible pairs of feature values. On the other hand, a

newly introduced Cartesian product feature may incur a high information gain, so it

can possibly affect the model learned.

There are many other ways of combining features. For instance, we can take arith-

metic or polynomial combinations of quantitative features (we saw examples of this in

the use of a �kernel in Example 1.9 on p.43 and Section 7.5). One attractive possibility

is to first apply concept learning or subgroup discovery, and then use these concepts

or subgroups as new Boolean features. For instance, in the dolphin domain we could

first learn subgroups such as Length= [3,5] ∧ Gills= no and use these as Boolean fea-

tures in a subsequent tree model. Notice that this expands the expressive power of tree

models through the use of negation: e.g., (Length= [3,5] ∧ Gills= no)= false is equiva-

lent to the disjunction Length 
= [3,5] ∨ Gills= yes, which is not directly expressible by

a feature tree.

Once we have constructed new features it is often a good idea to select a suitable

subset of them prior to learning. Not only will this speed up learning as fewer candi-

date features need to be considered, it also helps to guard against overfitting. There are

two main approaches to feature selection. The filter approach scores features on a par-

ticular metric and the top-scoring features are selected. Many of the metrics we have

seen so far can be used for feature scoring, including information gain, the χ2 statistic,

the correlation coefficient, to name just a few. An interesting variation is provided by

the Relief feature selection method, which repeatedly samples a random instance x

and finds its nearest hit h (instance of the same class) as well as its nearest miss m (in-

stance of opposite class). The i -th feature’s score is then decreased by Dis(xi ,hi )2 and

increased by Dis(xi ,mi )2, where Dis is some distance measure (e.g., Euclidean distance

for quantitative features, Hamming distance for categorical features). The intuition is

that we want to move closer to the nearest hit while differentiating from the nearest

miss.

One drawback of a simple filter approach is that no account is taken of redundancy

between features. Imagine, for the sake of the argument, duplicating a promising fea-

ture in the data set: both copies score equally high and will be selected, whereas the

second one provides no added value in the context of the first one. Secondly, feature fil-

ters do not detect dependencies between features as they are solely based on marginal
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distributions. For example, consider two Boolean features such that half the positives

have the value true for both features and the other half have the value false for both,

whereas all negatives have opposite values (again distributed half-half over the two

possibilities). It follows that each feature in isolation has zero information gain and

hence is unlikely to be selected by a feature filter, despite their combination being a

perfect classifier. One could say that feature filters are good at picking out possible

root features for a decision tree, but not necessarily good at selecting features that are

useful further down the tree.

To detect features that are useful in the context of other features we need to evaluate

sets of features; this usually goes under the name of wrapper approaches. The idea is

that feature selection is ‘wrapped’ in a search procedure that usually involves training

and evaluating a model with a candidate set of features. Forward selection methods

start with an empty set of features and add features to the set one at a time, as long as

they improve the performance of the model. Backward elimination starts with the full

set of features and aims at improving performance by removing features one at a time.

Since there are an exponential number of subsets of features it is usually not feasible

to search all possible subsets, and most approaches apply a ‘greedy’ search algorithm

that never reconsiders the choices it makes.

Matrix transformations and decompositions

We can also view feature construction and selection from a geometric perspective, as-

suming quantitative features. To this end we represent our data set as a matrix X with

n data points in rows and d features in columns, which we want to transform into a

new matrix W with n rows and r columns by means of matrix operations. To sim-

plify matters a bit, we assume that X is zero-centred and that W= XT for some d-by-r

transformation matrix T. For example, feature scaling corresponds to T being a d-by-d

diagonal matrix; this can be combined with feature selection by removing some of T’s

columns. A rotation is achieved by T being orthogonal, i.e., TTT = I. Clearly, several

such transformations can be combined (see also Background 1.2 on p.24).

One of the best-known algebraic feature construction methods is principal com-

ponent analysis (PCA). Principal components are new features constructed as linear

combinations of the given features. The first principal component is given by the di-

rection of maximum variance in the data; the second principal component is the direc-

tion of maximum variance orthogonal to the first component, and so on. PCA can be

explained in a number of different ways: here, we will derive it by means of the singular

value decomposition (SVD). Any n-by-d matrix can be uniquely written as a product of

three matrices with special properties:

X=UΣVT (10.2)
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Here, U is an n-by-r matrix, Σ is an r -by-r matrix and V is an d-by-r matrix (for the

moment we will assume r = d < n). Furthermore, U and V are orthogonal (hence ro-

tations) and Σ is diagonal (hence a scaling). The columns of U and V are known as the

left and right singular vectors, respectively; and the values on the diagonal of Σ are the

corresponding singular values. It is customary to order the columns of V and U so that

the singular values are decreasing from top-left to bottom-right.

Now, consider the n-by-r matrix W =UΣ, and notice that XV =UΣVTV =UΣ =W

by the orthogonality of V. In other words, we can construct W from X by means of the

transformation V: this is the reformulation of X in terms of its principal components.

The newly constructed features are found in UΣ: the first row is the first principal com-

ponent, the second row is the second principal component, and so on. These principal

components have a geometric interpretation as the directions in which X has largest,

second-largest, . . . variance. Assuming the data is zero-centred, these directions can

be brought out by a combination of rotation and scaling, which is exactly what PCA

does.

We can also use SVD to rewrite the scatter matrix in a standard form:

S=XTX= (UΣVT)T (UΣVT)= (VΣUT)(UΣVT)=VΣ2VT

This is known as the eigendecomposition of the matrix S: the columns of V are the

eigenvectors of S, and the elements on the diagonal of Σ2 – which is itself a diago-

nal matrix – are the eigenvalues. The right singular vectors of the data matrix X are the

eigenvectors of the scatter matrix S = XTX, and the singular values of X are the square

root of the eigenvalues of S. We can derive a similar expression for the Gram matrix

G=XXT =UΣ2UT, from which we see that the eigenvectors of the Gram matrix are the

left singular vectors of X. This demonstrates that in order to perform principal compo-

nents analysis it is sufficient to perform an eigendecomposition of the scatter or Gram

matrices, rather than a full singular value decomposition.

We have seen something resembling SVD in Section 1.1, where we considered the

following matrix product:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0

0 2 2 2

0 0 0 1

1 2 3 2

1 0 1 1

0 2 2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎝

1 0 0

0 2 0

0 0 1

⎞
⎟⎠ ×

⎛
⎜⎝

1 0 1 0

0 1 1 1

0 0 0 1

⎞
⎟⎠

The matrix on the left expresses people’s preferences for films (in columns). The right-

hand side decomposes or factorises this into film genres: the first matrix quantifies

people’s appreciation of genres; the last matrix associates films with genres; and the

middle matrix tells us the weight of each genre in determining preferences. This is
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not actually the decomposition computed by SVD, because the left and right matrices

in the product are not orthogonal. However, one could argue that this factorisation

better captures the data, because the person-by-genre and the film-by-genre matrices

are Boolean and sparse, which they won’t be in the SVD. The downside is that adding

integer or Boolean constraints makes the decomposition problem non-convex (there

are local optima) and computationally harder. Matrix decomposition with additional

constraints is a very active research area.

These matrix decomposition techniques are often used for dimensionality reduc-

tion. The rank of an n-by-d matrix is d (assuming d < n and no columns are linear

combinations of other columns). The above decompositions are full-rank because

r = d , and hence the data matrix is reconstructed exactly. A low-rank approximation of

a matrix is a factorisation where r is chosen as small as possible while still sufficiently

approximating the original matrix. The reconstruction error is usually measured as

the sum of the squared differences of the entries in X and the corresponding entries in

UΣVT. It can be shown that a truncated singular value decomposition with r < d re-

sults in the lowest reconstruction error in this sense among all decompositions of rank

up to r . Truncated SVD and PCA are popular ways to combine feature construction

and feature selection for quantitative features.

One interesting aspect of matrix decompositions such as SVD is that they expose

a previously hidden variable in the data. This can be seen as follows. Consider a de-

composition or approximation UΣVT with diagonal Σ but not necessarily orthogonal

U and V, and denote the i -the column of U and V as U·i (an n-vector) and V·i (a d-

vector). Then U·iσi (V·i )T is an outer product that produces an n-by-d matrix with rank

1 (σi denotes the i -th diagonal value of Σ). A rank-1 matrix is such that every column

is obtained from a single basis vector multiplied by a scalar (and the same for rows).

Assuming U and V have rank r these basis vectors are independent and so summing

up these rank-1 matrices for all i produces the original matrix:

UΣVT =
r∑

i=1
U·iσi (V·i )T

For example, the film rating matrix can be written as follows:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0

0 2 2 2

0 0 0 1

1 2 3 2

1 0 1 1

0 2 2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0

0 0 0 0

0 0 0 0

1 0 1 0

1 0 1 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 2 2 2

0 0 0 0

0 2 2 2

0 0 0 0

0 2 2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 1

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The matrices on the right can be interpreted as rating models conditioned on genre.

Exposing hidden variables in the data is one of the main applications of matrix de-

composition methods. For example, in information retrieval PCA is known under the
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name latent semantic indexing (LSA) (‘latent’ is synonymous with ‘hidden’). Instead

of film genres, LSA uncovers document topics by decomposing matrices containing

word counts per document, under the assumption that the word counts per topic are

independent and can thus simply be added up.3 The other main application of ma-

trix factorisation is completion of missing entries in a matrix, the idea being that if we

approximate the observed entries in the matrix as closely as possible using a low-rank

decomposition, this allows us to infer the missing entries.

10.4 Features: Summary and further reading

In this chapter we have given features some long-overdue attention. Features are the

telescopes through which we observe the data universe and therefore an important

unifying force in machine learning. Features are related to measurements in science,

but there is no widespread consensus on how to formalise and categorise different

measurements – I have taken inspiration from Stevens’ scales of measurements (Stevens,

1946), but otherwise aimed to stay close to current practice in machine learning.

� The main kinds of feature distinguished in Section 10.1 are categorical, ordinal

and quantitative features. The latter are expressed on a quantitative scale and

admit the calculation of the widest range of statistics of tendency (mean, me-

dian, mode; see (von Hippel, 2005) for a discussion of rules of thumb regarding

these), dispersion (variance and standard deviation, range, interquartile range)

and shape (skewness and kurtosis). In machine learning quantitative features

are often referred to as continuous features, but I think this term is inappropri-

ate as it wrongly suggests that their defining feature is somehow an unlimited

precision. It is important to realise that quantitative features do not necessarily

have an additive scale: e.g., quantitative features expressing a probability are ex-

pressed on a multiplicative scale, and the use of Euclidean distance, say, would

be inappropriate for non-additive features. Ordinal features have order but not

scale; and categorical features (also called nominal or discrete) have neither or-

der nor scale.

� Structured features are first-order logical statements that refer to parts of objects

by means of local variables and use some kind of aggregation, such as existential

quantification or counting, to extract a property of the main object. Constructing

first-order features prior to learning is often referred to as propositionalisation;

3Other models are possible: e.g., in Boolean matrix decomposition the matrix product is changed to a

Boolean product in which integer addition is replaced by Boolean disjunction (so that 1+ 1 = 1), with the

effect that additional topics do not provide additional explanatory power for the occurrence of a word in a

document.
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Kramer et al. (2000) and Lachiche (2010) give surveys, and an experimental com-

parison of different approaches is carried out by Krogel et al. (2003).

� In Section 10.2 we looked at a number of feature transformations. Discretisa-

tion and thresholding are the best-known of these, turning a quantitative fea-

ture into a categorical or a Boolean one. One of the most effective discretisation

methods is the recursive partitioning algorithm using information gain to find

the thresholds and a stopping criterion derived from the minimum description

length principle proposed by Fayyad and Irani (1993). Other overviews and pro-

posals are given by Boullé (2004, 2006). The agglomerative merging approach

using χ2 was proposed by Kerber (1992).

� We have seen that in a two-class setting, supervised discretisation can be vi-

sualised by means of coverage curves. This then naturally leads to the idea of

using these coverage curves and their convex hull to calibrate rather than just

discretise the features. After all, ordinal and quantitative features are univari-

ate rankers and scoring classifiers and thus the same classifier calibration meth-

ods can be applied, in particular logistic and isotonic calibration as discussed

in Section 7.4. The calibrated features live in probability space, but we might

prefer to work with log-odds space instead as this is additive rather than multi-

plicative. Fitting data to a fixed linear decision boundary in calibrated log-odds

space is closely related to training a naive Bayes model. Isotonic calibration leads

to piecewise axis-parallel decision boundaries; owing to the discretising nature

of isotonic calibration this can be understood as the constructing of a grouping

model, even if the original model in the uncalibrated space was a grading model.

� Section 10.3 was devoted to feature construction and selection. Early approaches

to feature construction and constructive induction were proposed by Ragavan

and Rendell (1993); Donoho and Rendell (1995). The instance-based Relief fea-

ture selection method is due to Kira and Rendell (1992) and extended by Robnik-

Sikonja and Kononenko (2003). The distinction between filter approaches to fea-

ture selection – which evaluate features on their individual merits – and wrapper

approaches, which evaluate sets of features, is originally due to Kohavi and John

(1997). Hall (1999) proposes a filter approach called correlation-based feature

selection that aims at combining the best of both worlds. Guyon and Elisseeff

(2003) give an excellent introduction to feature selection.

� Finally, we looked at feature construction and selection from a linear algebra per-

spective. Matrix decomposition and factorisation is an actively researched tech-

nique that was instrumental in winning a recent film recommendation challenge

worth $1 million (Koren et al., 2009). Decomposition techniques employing ad-

ditional constraints include non-negative matrix decomposition (Lee et al., 1999).
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Boolean matrix decomposition is studied by Miettinen (2009). Mahoney and

Drineas (2009) describe a matrix decomposition technique that uses actual columns

and rows of the data matrix to preserve sparsity (unlike SVD which produces

dense matrices even if the original matrix is sparse). Latent semantic index-

ing and a probabilistic extension is described by Hofmann (1999). Ding and He

(2004) discuss the relationship between K -means clustering and principal com-

ponent analysis.

�



CHAPTER 11

Model ensembles

T
WO HEADS ARE BETTER THAN ONE – a well-known proverb suggesting that two minds

working together can often achieve better results. If we read ‘features’ for ‘heads’ then

this is certainly true in machine learning, as we have seen in the preceding chapters.

But we can often further improve things by combining not just features but whole mod-

els, as will be demonstrated in this chapter. Combinations of models are generally

known as model ensembles. They are among the most powerful techniques in machine

learning, often outperforming other methods. This comes at the cost of increased al-

gorithmic and model complexity.

The topic of model combination has a rich and diverse history, to which we can

only partly do justice in this short chapter. The main motivations came from compu-

tational learning theory on the one hand, and statistics on the other. It is a well-known

statistical intuition that averaging measurements can lead to a more stable and reliable

estimate because we reduce the influence of random fluctuations in single measure-

ments. So if we were to build an ensemble of slightly different models from the same

training data, we might be able to similarly reduce the influence of random fluctu-

ations in single models. The key question here is how to achieve diversity between

these different models. As we shall see, this can often be achieved by training models

on random subsets of the data, and even by constructing them from random subsets

of the available features.

330
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The motivation from computational learning theory went along the following lines.

As we have seen in Section 4.4, learnability of hypothesis languages is studied in the

context of a learning model, which determines what we mean by learnability. PAC-

learnability requires that a hypothesis be approximately correct most of the time. An

alternative learning model called weak learnability requires only that a hypothesis is

learned that is slightly better than chance. While it appears obvious that PAC-learnability

is stricter than weak learnability, it turns out that the two learning models are in fact

equivalent: a hypothesis language is PAC-learnable if and only if it is weakly learnable.

This was proved constructively by means of an iterative algorithm that repeatedly con-

structs a hypothesis aimed at correcting the mistakes of the previous hypothesis, thus

‘boosting’ it. The final model combined the hypotheses learned in each iteration, and

therefore establishes an ensemble.

In essence, ensemble methods in machine learning have the following two things

in common:

� they construct multiple, diverse predictive models from adapted versions of the

training data (most often reweighted or resampled);

� they combine the predictions of these models in some way, often by simple av-

eraging or voting (possibly weighted).

It should, however, also be stressed that these commonalities span a very large and

diverse space, and that we should correspondingly expect some methods to be practi-

cally very different even though superficially similar. For example, it makes a big differ-

ence whether the way in which training data is adapted for the next iteration takes the

predictions of the previous models into account or not. We will explore this space by

means of the two best-known ensemble methods: bagging in Section 11.1 and boosting

in Section 11.2. A short discussion of these and related ensemble methods then follows

in Section 11.3, before we conclude the chapter in the usual way with a summary and

pointers for further reading.

11.1 Bagging and random forests

Bagging, short for ‘bootstrap aggregating’, is a simple but highly effective ensemble

method that creates diverse models on different random samples of the original data

set. These samples are taken uniformly with replacement and are known as bootstrap

samples. Because samples are taken with replacement the bootstrap sample will in

general contain duplicates, and hence some of the original data points will be missing

even if the bootstrap sample is of the same size as the original data set. This is ex-

actly what we want, as differences between the bootstrap samples will create diversity

among the models in the ensemble. To get an idea of how different bootstrap samples
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Figure 11.1. (left) An ensemble of five basic linear classifiers built from bootstrap samples with

bagging. The decision rule is majority vote, leading to a piecewise linear decision boundary.

(right) If we turn the votes into probabilities, we see the ensemble is effectively a grouping

model: each instance space segment obtains a slightly different probability.

might be, we can calculate the probability that a particular data point is not selected

for a bootstrap sample of size n as (1−1/n)n , which for n = 5 is about one-third and has

limit 1/e = 0.368 for n →∞. This means that each bootstrap sample is likely to leave

out about a third of the data points.

Algorithm 11.1 gives the basic bagging algorithm, which returns the ensemble as

a set of models. We can choose to combine the predictions from the different mod-

els by voting – the class predicted by the majority of models wins – or by averaging,

which is more appropriate if the base classifiers output scores or probabilities. An il-

lustration is given in Figure 11.1. I trained five basic linear classifiers on bootstrap

samples from 20 positive and 20 negative examples. We can clearly see the diversity of

the five linear classifiers, which is helped by the fact that the data set is quite small. The

Algorithm 11.1: Bagging(D,T,A ) – train an ensemble of models from bootstrap

samples.

Input : data set D ; ensemble size T ; learning algorithm A .

Output : ensemble of models whose predictions are to be combined by voting

or averaging.

1 for t = 1 to T do

2 build a bootstrap sample Dt from D by sampling |D| data points with

replacement;

3 run A on Dt to produce a model Mt ;

4 end

5 return {Mt |1≤ t ≤ T }
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figure demonstrates the difference between combining predictions through voting (Fig-

ure 11.1 (left)) and creating a probabilistic classifier by averaging (Figure 11.1 (right)).

With voting we see that bagging creates a piecewise linear decision boundary, some-

thing that is impossible with a single linear classifier. If we transform the votes from

each model into probability estimates, we see that the different decision boundaries

partition the instance space into segments that can potentially each receive a different

score.

Bagging is particularly useful in combination with tree models, which are quite sen-

sitive to variations in the training data. When applied to tree models, bagging is often

combined with another idea: to build each tree from a different random subset of the

features, a process also referred to as subspace sampling. This encourages the diversity

in the ensemble even more, and has the additional advantage that the training time of

each tree is reduced. The resulting ensemble method is called random forests, and the

algorithm is given in Algorithm 11.2.

Since a decision tree is a grouping model whose leaves partition the instance space,

so is a random forest: its corresponding instance space partition is essentially the

intersection of the partitions of the individual trees in the ensemble. While the ran-

dom forest partition is therefore finer than most tree partitions, it can in principle be

mapped back to a single tree model (because intersection corresponds to combining

the branches of two different trees). This is different from bagging linear classifiers,

where the ensemble has a decision boundary that can’t be learned by a single base

classifier. One could say, therefore, that the random forest algorithm implements an

alternative training algorithm for tree models.

Algorithm 11.2: RandomForest(D,T,d ) – train an ensemble of tree models from

bootstrap samples and random subspaces.

Input : data set D ; ensemble size T ; subspace dimension d .

Output : ensemble of tree models whose predictions are to be combined by

voting or averaging.

1 for t = 1 to T do

2 build a bootstrap sample Dt from D by sampling |D| data points with

replacement;

3 select d features at random and reduce dimensionality of Dt accordingly;

4 train a tree model Mt on Dt without pruning;

5 end

6 return {Mt |1≤ t ≤ T }
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11.2 Boosting

Boosting is an ensemble technique that is superficially similar to bagging, but uses a

more sophisticated technique than bootstrap sampling to create diverse training sets.

The basic idea is simple and appealing. Suppose we train a linear classifier on a data

set and find that its training error rate is ε. We want to add another classifier to the

ensemble that does better on the misclassifications of the first classifier. One way to

do that is to duplicate the misclassified instances: if our base model is the basic linear

classifier, this will shift the class means towards the duplicated instances. A better way

to achieve the same thing is to give the misclassified instances a higher weight, and to

modify the classifier to take these weights into account (e.g., the basic linear classifier

can calculate the class means as a weighted average).

But how much should the weights change? The idea is that half of the total weight is

assigned to the misclassified examples, and the other half to the rest. Since we started

with uniform weights that sum to 1, the current weight assigned to the misclassified ex-

amples is exactly the error rate ε, so we multiply their weights by 1/2ε. Assuming ε< 0.5

this is an increase in weight as desired. The weights of the correctly classified examples

get multiplied by 1/2(1− ε), so the adjusted weights again sum to 1. In the next round

we do exactly the same, except we take the non-uniform weights into account when

evaluating the error rate.

Example 11.1 (Weight updates in boosting). Suppose a linear classifier

achieves performance as in the contingency table on the left. The error

rate is ε = (9+16)/100 = 0.25. The weight update for the misclassified examples

is a factor 1/2ε= 2 and for the correctly classified examples 1/2(1−ε)= 2/3.

Predicted ⊕ Predicted �
Actual ⊕ 24 16 40

Actual � 9 51 60

33 67 100

⊕ �
⊕ 16 32 48

� 18 34 52

34 66 100

Taking these updated weights into account leads to the contingency table

on the right, which has a (weighted) error rate of 0.5.

We need one more ingredient in our boosting algorithm and that is a confidence

factorα for each model in the ensemble, which we will use to form an ensemble predic-

tion that is a weighted average of each individual model. Clearly we want α to increase
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with decreasing ε: a common choice is

αt = 1

2
ln

1−εt

εt
= ln

√
1−εt

εt
(11.1)

which we will justify in a moment. The basic boosting algorithm is given in Algorithm

11.3. Figure 11.2 (left) illustrates how a boosted ensemble of five basic linear classi-

fiers can achieve zero training error. It is clear that the resulting decision boundary

is much more complex than could be achieved by a single basic linear classifier. In

contrast, a bagged ensemble of basic linear classifiers has learned five very similar de-

cision boundaries, the reason being that on this data set the bootstrap samples are all

very similar.

I will now justify the particular choice for αt in Equation 11.1. First, I will show

that the two weight updates for the misclassified instances and the correctly classified

instances can be written as reciprocal terms δt and 1/δt normalised by some term Zt :

1

2εt
= δt

Zt

1

2(1−εt )
= 1/δt

Zt

The second expression gives δt = 2(1− εt )/Zt ; substituting this back into the first ex-

pression yields

Zt = 2
√

εt (1−εt ) δt =
√

1−εt

εt
= exp(αt ) (11.2)

Algorithm 11.3: Boosting(D,T,A ) – train an ensemble of binary classifiers from

reweighted training sets.

Input : data set D ; ensemble size T ; learning algorithm A .

Output : weighted ensemble of models.

1 w1i ←1/|D| for all xi ∈D ; // start with uniform weights

2 for t = 1 to T do

3 run A on D with weights wti to produce a model Mt ;

4 calculate weighted error εt ;

5 if εt ≥ 1/2 then

6 set T ← t −1 and break

7 end

8 αt ← 1
2 ln 1−εt

εt
; // confidence for this model

9 w(t+1)i ←wti
2εt

for misclassified instances xi ∈D ; // increase weight

10 w(t+1) j ← wt j

2(1−εt ) for correctly classified instances x j ∈D ; // decrease weight

11 end

12 return M(x)=∑T
t=1αt Mt (x)
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Figure 11.2. (left) An ensemble of five boosted basic linear classifiers with majority vote. The

linear classifiers were learned from blue to red; none of them achieves zero training error, but

the ensemble does. (right) Applying bagging results in a much more homogeneous ensemble,

indicating that there is little diversity in the bootstrap samples.

So the weight update for misclassified instances is exp(αt )/Zt and for correctly classi-

fied instances exp(−αt )/Zt . Using the fact that yi Mt (xi ) = +1 for instances correctly

classified by model Mt and −1 otherwise, we can write the weight update as

w(t+1)i =wti
exp
(−αt yi Mt (xi )

)
Zt

which is the expression commonly found in the literature.

Let us now step back and pretend that we haven’t yet decided what αt should be in

each round. Since the weight updates are multiplicative, we have

w(T+1)i =w1i

T∏
t=1

exp
(−αt yi Mt (xi )

)
Zt

= 1

|D|
exp
(−yi M(xi )

)
∏T

t=1 Zt

where M(xi )=∑T
t=1αt Mt (xi ) is the model represented by the boosted ensemble. The

weights always add up to 1 over the instance space, and so

T∏
t=1

Zt = 1

|D|
|D|∑
i=1

exp
(−yi M(xi )

)

Notice that exp
(−yi M(xi )

)
is always positive and at least 1 if −yi M(xi ) is positive,

which happens if xi is misclassified by the ensemble (i.e., sign(M(xi ) 
= yi ). So the

right-hand side of this expression is at least equal to the training error of the boosted

ensemble, and
∏T

t=1 Zt is an upper bound on that training error. A simple heuristic

would therefore be to greedily minimise

Zt =
|D|∑
i=1

wti exp
(−αt yi Mt (xi )

)
(11.3)
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in each boosting round. Now, the sum of the weights of instances incorrectly classified

by Mt is εt , and so

Zt = εt exp(αt )+ (1−εt )exp(−αt )

Taking the derivative with respect to αt , setting it to zero and solving for αt yields αt as

given in Equation 11.1 and Zt as given in Equation 11.2.

Notice that Equation 11.3 demonstrates that the loss function minimised by boost-

ing is �exponential loss exp
(−y ŝ(x)

)
which we already encountered in Figure 2.6 on

p.63. Notice, furthermore, that minimising Zt means minimising 2
�
εt (1−εt ) accord-

ing to Equation 11.2. You may recognise this as the �
�

Gini impurity measure we

investigated in Chapter 5. There, we saw that this splitting criterion is insensitive to

changes in the class distribution (see Figure 5.7 on p.146). Here, it arises essentially

because of the way weight updates are implemented in the boosting algorithm.

Boosted rule learning

An interesting variant of boosting arises when our base models are partial classifiers

that sometimes abstain from making a prediction. For example, suppose that our base

classifiers are conjunctive rules whose head is fixed to predicting the positive class. An

individual rule therefore either predicts the positive class for those instances it cov-

ers, or otherwise abstains from making a prediction. We can use boosting to learn an

ensemble of such rules that takes a weighted vote among its members.

We need to make some small adjustments to the boosting equations, as follows.

Notice that εt is the weighted error of the t-th base classifier. Since our rules always

predict positive for covered instances, these errors only concern covered negatives,

which we will indicate by ε�t . Similarly, we indicate the weighted sum of covered pos-

itives as ε⊕t , which will play the role of 1− εt . However, with abstaining rules there is

a third component, indicated as ε0
t , which is the weighted sum of instances which the

rule doesn’t cover (ε0
t +ε⊕t +ε�t = 1). We then have

Zt = ε0
t +ε�t exp(αt )+ε⊕t exp(−αt )

The value of αt which maximises this is

αt = 1

2
ln

ε⊕t
ε�t
= ln

√
ε⊕t
ε�t

(11.4)

which gives

Zt = ε0
t +2
√

ε⊕t ε
�
t = 1−ε⊕t −ε�t +2

√
ε⊕t ε

�
t = 1−

(√
ε⊕t −
√

ε�t
)2

This means that in each boosting round we construct a rule that maximises
∣∣∣√ε⊕t −

√
ε�t
∣∣∣,

and set its confidence factor to αt as in Equation 11.4. In order to obtain a prediction
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from the ensemble, we add up the confidence factors of all rules covering it. Note that

these confidence factors are negative if ε⊕t < ε�t , which indicates that the rule correlates

with the negative class; this is not a problem as such, but can be avoided by changing

the objective function for individual rules to
√

ε⊕t −
√

ε�t .

The weight updates after each iteration of boosting are the same as previously, ex-

cept that the weights of examples not covered by the rule do not change. Boosted rule

learning is therefore similar to the �weighted covering (Algorithm 6.5 on p.182) algo-

rithm for subgroup discovery. The difference is that there we wanted to promote rule

overlap without reference to the class and hence decrease the weight of all covered

examples, whereas here we decrease the weight of covered positives and increase the

weight of covered negatives.

11.3 Mapping the ensemble landscape

Now that we have looked at two often-used ensemble methods in somewhat more de-

tail, we consider how their differences in performance might be explained, before turn-

ing attention to some of the many other ensemble methods in the literature.

Bias, variance and margins

Ensemble methods are a good vehicle to further understand the�bias–variance dilemma

we discussed in the context of regression in Section 3.2. Broadly speaking, there are

three reasons why a model may misclassify a test instance. First, it may simply be un-

avoidable in the given feature space if instances from different classes are described by

the same feature vectors. In a probabilistic context this happens when the per-class

distributions P (X |Y ) overlap, so that the same instance has non-zero likelihoods for

several classes. In such a situation, the best we can hope to do is to approximate the

target concept.

The second reason for classification errors is that the model lacks expressivity to

exactly represent the target concept. For example, if the data is not linearly separable

then even the best linear classifier will make mistakes. This is the bias of a classifier,

and it is inversely related to its expressivity. Although there is no generally agreed way

to measure expressivity or bias of a classifier1 it is intuitively clear that, say, a hyperbolic

decision boundary has lower bias than a linear one. It is also clear that tree models have

the lowest possible bias, as their leaves can be made arbitrarily small to cover singleton

instances.

It may seem that low-bias models are generally preferable. However, a practical rule

of thumb in machine learning is that low-bias models tend to have high variance, and

1While squared loss nicely decomposes into squared bias and variance as shown in Equation 3.2 on p.93,

loss functions used in classification such as 0–1 loss can be decomposed in several ways.
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vice versa. Variance is the third source of classification errors. A model has high vari-

ance if its decision boundary is highly dependent on the training data. For example,

the nearest-neighbour classifier’s instance space segments are determined by a single

training point, so if I move a training point in a segment bordering on the decision

boundary, that boundary will change. Tree models have high variance for a different

reason: if I change the training data sufficiently for another feature to be selected at the

root of the tree, then the rest of the tree is likely to be different as well. An example of a

low-variance model is the basic linear classifier, because it averages over all the points

in a class.

Now look back at Figure 11.1 on p.332. The bagged ensemble of basic linear clas-

sifiers has learned a piecewise linear decision boundary that exceeds the expressivity

of a single linear classifier. This illustrates that bagging, like any ensemble method,

is capable of reducing the bias of a high-bias base model such as a linear classifier.

However, if we compare this with boosting in Figure 11.2 on p.336, we see that the re-

duction in bias resulting from bagging is much smaller than that of boosting. In fact,

bagging is predominantly a variance-reduction technique, while boosting is primarily

a bias-reduction technique. This explains why bagging is often used in combination

with high-variance models such as tree models (�random forests in Algorithm 11.2),

whereas boosting is typically used with high-bias models such as linear classifiers or

univariate decision trees (also called decision stumps).

Another way to understand boosting is in terms of margins. Intuitively, the margin

is the signed distance from the decision boundary, with the sign indicating whether we

are on the correct or the wrong side. It has been observed in experiments that boost-

ing is effective in increasing the margins of examples, even if they are already on the

correct side of the decision boundary. The effect is that boosting may continue to im-

prove performance on the test set even after the training error has been reduced to

zero. Given that boosting was originally conceived in a PAC-learning framework, which

is not specifically aimed at increasing margins, this was a surprising result.

Other ensemble methods

There are many other ensemble methods beyond bagging and boosting. The main

variation lies in the way predictions of the base models are combined. Notice that

this could itself be defined as a learning problem: given the predictions of some base

classifiers as features, learn a meta-model that best combines their predictions. For ex-

ample, in boosting we could learn the weights αt rather than deriving them from each

base model’s error rate. Learning a linear meta-model is known as stacking. Several

variations on this theme exist: e.g., decision trees have been used as the meta-model.

It is also possible to combine different base models into a heterogeneous ensemble:

in this way the base model diversity derives from the fact that base models are trained
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by different learning algorithms, and so they can all use the same training set. Some

of these base models might employ different settings of a parameter: for example, the

ensemble might include several support vector machines with different values of the

complexity parameter which regulates the extent to which margin errors are tolerated.

Generally speaking, then, model ensembles consist of a set of base models and

a meta-model that is trained to decide how base model predictions should be com-

bined. Implicitly, training a meta-model involves an assessment of the quality of each

base model: for instanceif the meta-model is linear as in stacking, a weight close to

zero means that the corresponding base classifier does not contribute much to the en-

semble. It is even conceivable that a base classifier obtains a negative weight, meaning

that in the context of the other base models its predictions are best inverted. We could

go one step further and try to predict how well a base model is expected to perform,

even before we train it! By formulating this as a learning problem at the meta-level, we

arrive at the field of meta-learning.

Meta-learning

Meta-learning first involves training a variety of models on a large collection of data

sets. The aim is then to construct a model that can help us answer questions such as

the following:

� In which situations is a decision tree likely to outperform a support vector ma-

chine?

� When can a linear classifier be expected to perform poorly?

� Can the data be used to give suggestions for setting particular parameters?

The key question in meta-learning is how to design the features on which the meta-

model is built. These features should combine data set characteristics and relevant

aspects of the trained model. Data set characteristics should go much further than

simply listing the number and kind of features and the number of instances, as it is

unlikely that anything can be predicted about a model’s performance from just that

information. For example, we can try to assess the noise level of a data set by measur-

ing the size of a trained decision tree before and after pruning. Training simple models

such as decision stumps on a data set and measuring their performance also gives use-

ful information.

In Background 1.1 on p.20 we referred to the no free lunch theorem, which states

that no learning algorithm can outperform any other learning algorithm over the set

of all possible learning problems. As a corollary, we have that meta-learning over all

possible learning problems is futile: if it wasn’t, we could build a single hybrid model

that uses a meta-model to tell us which base model would achieve better than random
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performance on a particular data set. It follows that we can only hope to achieve useful

meta-learning over non-uniform distributions of learning problems.

11.4 Model ensembles: Summary and further reading

In this short chapter we have discussed some of the fundamental ideas underlying en-

semble methods. What all ensemble methods have in common is that they construct

several base models from adapted versions of the training data, on top of which some

technique is employed to combine the predictions or scores from the base models into

a single prediction of the ensemble. We focused on bagging and boosting as two of the

most commonly used ensemble methods. A good introduction to model ensembles is

given by Brown (2010). The standard reference on classifier combination is Kuncheva

(2004) and a more recent overview is given by Zhou (2012).

� In Section 11.1 we discussed bagging and random forests. Bagging trains di-

verse models from samples of the training data, and was introduced by Breiman

(1996a). Random forests, usually attributed to Breiman (2001), combine bagged

decision trees with random subspaces; similar ideas were developed by Ho (1995)

and Amit and Geman (1997). These techniques are particularly useful to reduce

the variance of low-bias models such as tree models.

� Boosting was discussed in Section 11.2. The key idea is to train diverse models by

increasing the weight of previously misclassified examples. This helps to reduce

the bias of otherwise stable learners such as linear classifiers or decision stumps.

An accessible overview is given by Schapire (2003). Kearns and Valiant (1989,

1994) posed the question whether a weak learning algorithm that performs just

slightly better than random guessing can be boosted into an arbitrarily accu-

rate strong learning algorithm. Schapire (1990) introduced a theoretical form

of boosting to show the equivalence of weak and strong learnability. The Ad-

aBoost algorithm on which Algorithm 11.3 is based was introduced by Freund

and Schapire (1997). Schapire and Singer (1999) give multi-class and multi-label

extensions of AdaBoost. A ranking version of AdaBoost was proposed by Freund

et al. (2003). The boosted rule learning approach that can handle classifiers that

may abstain was inspired by Slipper (Cohen and Singer, 1999), a boosted version

of Ripper (Cohen, 1995).

� In Section 11.3 we discussed bagging and boosting in terms of bias and vari-

ance. Schapire, Freund, Bartlett and Lee (1998) provide a detailed theoretical

and experimental analysis of boosting in terms of improving the margin distri-

bution. I also mentioned some other ensemble methods that train a meta-model

for combining the base models. Stacking employs a linear meta-model and was



342 11. Model ensembles

introduced by Wolpert (1992) for classification and extended by Breiman (1996b)

for regression. Meta-decision trees were introduced by Todorovski and Dzeroski

(2003).

� We also briefly discussed meta-learning as a technique for learning about the

performance of learning algorithms. The field originated from an early empirical

study documented by Michie et al. (1994). Recent references are Brazdil et al.

(2009, 2010). Unpruned and unpruned decision trees were used to obtain data

set characteristics by Peng et al. (2002). The idea of training simple models to

obtain further data characteristics is known as landmarking (Pfahringer et al.,

2000).

�



CHAPTER 12

Machine learning experiments

M
ACHING LEARNING IS a practical subject as much as a computational one. While we

may be able to prove that a particular learning algorithm converges to the theoretically

optimal model under certain assumptions, we need actual data to investigate, e.g., the

extent to which those assumptions are actually satisfied in the domain under consider-

ation, or whether convergence happens quickly enough to be of practical use. We thus

evaluate or run particular models or learning algorithms on one or more data sets, ob-

tain a number of measurements and use these to answer particular questions we might

be interested in. This broadly characterises what is known as machine learning exper-

iments.

In the natural sciences, an experiment can be seen as a question to nature about

a scientific theory. For example, Arthur Eddington’s famous 1919 experiment to ver-

ify Einstein’s theory of general relativity asked the question: Are rays of light bent by

gravitational fields produced by large celestial objects such as the Sun? To answer this

question, the perceived position of stars was recorded under several conditions includ-

ing a total solar eclipse. Eddington was able to show that these measurements indeed

differed to an extent unexplained by Newtonian physics but consistent with general

relativity.

While you don’t have to travel to the island of Príncipe to perform machine learn-

ing experiments, they bear some similarity to experiments in physics in that machine

343
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learning experiments pose questions about models that we try to answer by means of

measurements on data. The following are common examples of the types of question

we are interested in:

� How does model m perform on data from domain D?

� Which of these models has the best performance on data from domain D?

� How do models produced by learning algorithm A perform on data from do-

main D?

� Which of these learning algorithms gives the best model on data from domain

D?

Assuming we have access to data from domain D, we perform measurements on our

models using this data in order to answer these questions.1 There is a large statistical

literature about the technicalities of data experiments, and it is all too easy to mistake

the forest for the trees. What I mean is that there is a certain tendency in the machine

learning literature to approach experimentation in a formulaic manner, recording a

fixed set of measurements and significance tests (the trees) with scant consideration

for the question we are aiming to answer (the forest). My aim in this short chapter

is not to get buried in technicalities, but rather to give you some appreciation of the

importance of choosing measurements that are appropriate for your particular exper-

imental objective (Section 12.1). In Sections 12.2 and 12.3 we take a closer look at how

to measure and interpret them.

12.1 What to measure

A good starting point for our measurements are the �evaluation measures in Table 2.3

on p.57. However, measurements don’t have to be scalars: a ROC or coverage curve

also counts as a measurement in this context. The appropriateness of any of these for

our purposes depends on how we define performance in relation to the question the

experiment is designed to answer: let’s call it our experimental objective. It is impor-

tant not to confuse performance measures and experimental objectives: the former is

something we can measure, while the latter is what we are really interested in. There is

often a discrepancy between the two. For example, in psychology our experimental ob-

jective may be to quantify a person’s intelligence level, and our chosen measurement

may be the IQ score achieved on a standardised test – while the IQ score may correlate

with intelligence level, it is clear they are not the same thing.

1It is much harder to answer questions about a new domain given measurements on different domains,

although that is what we are ultimately interested in.
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In machine learning the situation is usually more concrete, and our experimental

objective – accuracy, say – is something we can measure in principle, or at least es-

timate (since we’re generally interested in accuracy on unseen data). However, there

may be unknown factors we have to account for. For example, the model may need

to operate in different operating contexts with different class distributions. In such a

case we can treat accuracy on future data as a random variable and take its expec-

tation, assuming some probability distribution over the proportion of positives pos.

Since acc = pos · tpr+ (1−pos) · tnr, and assuming we can measure true positive and

negative rates independently of the class distribution, we have (assuming a uniform

distribution over pos)

E [acc]= E
[
pos · tpr+ (1−pos) · tnr

]= E
[
pos
]

tpr+E
[
1−pos

]
tnr

= tpr/2+ tnr/2= avg-rec

In other words, even though estimating accuracy in future contexts is our experimen-

tal objective, the fact that we are anticipating the widest possible range of class dis-

tributions suggests that the evaluation measure we should use on our test data is not

accuracy, but average recall.

Example 12.1 (Expected accuracy for unknown class distributions). Imagine

your classifier achieves the following result on a test data set:

Predicted ⊕ Predicted �
Actual ⊕ 60 20 80

Actual � 0 20 20

60 40 100

This gives tpr = 0.75, tnr = 1.00 and acc = 0.80. However, this is conditioned

on having four times as many positives as negatives. If we take the expectation

over pos uniformly sampled from the unit interval, expected accuracy increases

to (tpr + tnr)/2 = 0.88 = avg-rec. This is higher because the test data under-

emphasises the classifier’s good performance on the negatives.

Suppose you have a second classifier achieving the following result on the

test set:

Predicted ⊕ Predicted �
Actual ⊕ 75 5 80

Actual � 10 10 20

85 15 100
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This gives tpr = 0.94, tnr = 0.50, acc = 0.85 and avg-rec = 0.72. These experimen-

tal results tell you that the second model is better if the class distribution in the

test set is representative, but the first model should be chosen if we have no prior

information about the class distribution in the operating context.

As the example demonstrates, if you choose accuracy as your evaluation measure,

you are making an implicit assumption that the class distribution in the test set is rep-

resentative for the operating context in which the model is going to be deployed. Fur-

thermore, if all you recorded in your experiments is accuracy, you will not be able to

switch to average recall later if you realise that you need to incorporate varying class

distributions. It is therefore good practice to record sufficient information to be able to

reproduce the contingency table if needed. A sufficient set of measurements would be

true positive rate, true negative rate (or false positive rate), the class distribution and

the size of the test set.

As a second example of how your choice of evaluation measures can carry implicit

assumptions we consider the case of precision and recall as often reported in the in-

formation retrieval literature.

Example 12.2 (Precision and recall as evaluation measures). In the second

contingency table in Example 12.1 we have precision prec = 75/85 = 0.88 and

recall rec= 75/80= 0.94 (remember that recall and true positive rate are different

names for the same measure). The F-measure is the harmonic mean of precision

and recall (see Background 10.1), which is 0.91.

Now consider the following contingency table:

Predicted ⊕ Predicted �
Actual ⊕ 75 5 80

Actual � 10 910 920

85 915 1000

We have a much higher number of true negatives and therefore a much higher

true negative rate and accuracy (both rounded to 0.99). On the other hand, true

positive rate/recall, precision and F-measure stay exactly the same.

This example demonstrates that the combination of precision and recall, and there-

fore the F-measure, is insensitive to the number of true negatives. This is not a deficiency
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of the F-measure: quite the contrary, it is very useful in domains where negatives

abound, and it would therefore be very easy to achieve high accuracy by always pre-

dicting negative. Examples of such domains include search and query engines (most

search items are not answers to most queries) and link prediction in networks (most

pairs of nodes are not linked). The point is rather to emphasise that if you choose F-

measure as your evaluation measure, you are making an implicit assertion that true

negatives are not relevant for your operating context.

Finally, I would like to draw attention to a much-neglected evaluation measure that

has, nevertheless, practical significance. This is the predicted positive rate which is the

number of positive predictions (the sum of the left column in the contingency table) in

proportion to the number of instances:

ppr = TP+FP

Pos+Neg
= pos · tpr+ (1−pos) · fpr

While the predicted positive rate doesn’t tell us much about the classification perfor-

mance of the classifier, it does tell us what the classifier estimates the class distribution

to be. It is also something that is normally under control of a ranker or scoring classi-

fier if the entire test set is given: e.g., a predicted positive rate of 1/2 is simply achieved

by setting the threshold such that the ranking splits into equal parts. This suggests a

connection between classification accuracy and ranking accuracy: for example, it can

be shown that if we split a ranking of n instances at one of the n+1 possible split points

chosen uniformly at random, the expected accuracy is equal to

E [acc]= n

n+1

2AUC−1

4
+1/2

Example 12.3 (Expected accuracy and AUC). Suppose a ranker obtains the fol-

lowing ranking on a small test set: ⊕⊕��⊕�. This corresponds to two rank-

ing errors out of a possible nine, so has AUC = 7/9. There are seven poten-

tial split points, corresponding to predicted positive rates of (from left to right)

0,1/6, . . . ,5/6,1 and corresponding accuracies 3/6,4/6,5/6,4/6,3/6,4/6,3/6. The

expected accuracy over all possible split points is (3+4+5+4+3+4+3)/(6 ·7)=
26/42. On the other hand, (2AUC−1)/4 = 5/36 and so n

n+1 (2AUC−1)/4+1/2 =
5/42+1/2= 26/42.

This discussion is intended to highlight two things. First, if a model is a good ranker

but its probability estimates are not well-calibrated, it might be a good idea to set the

decision threshold such that it achieves a particular predicted positive rate (e.g., ppr =
pos) rather than invoking the MAP decision rule. Secondly, in such situations AUC is
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a good evaluation measure because it is linearly related to expected accuracy in that

scenario.

In summary, your choice of evaluation measures should reflect the assumptions

you are making about your experimental objective as well as possible contexts in which

your models operate. We have looked at the following cases:

� Accuracy is a good evaluation measure if the class distribution in your test set is

representative for the operating context.

� Average recall is the evaluation measure of choice if all class distributions are

equally likely.

� Precision and recall shift the focus from classification accuracy to a performance

analysis ignoring the true negatives.

� Predicted positive rate and AUC are relevant measures in a ranking context.

In the next section we consider how to estimate these evaluation measures from data.

12.2 How to measure it

The evaluation measures we discussed in the previous section are all calculated from

a contingency table. The question of ‘how to measure it’ thus seems to have a very

straightforward answer: construct the contingency table from a test set and perform

the relevant calculations. However, two issues demand our attention: (i) which data to

base our measurements on, and (ii) how to assess the inevitable uncertainty associated

with every measurement. In this section we are concerned with the first issue; the

second issue will be discussed in the next section.

When we measure something – say, a person’s height – several times, we expect

some variation to occur from one measurement to the next. This is inherent to the

measurement process: e.g., you may be stretching the tape measure a bit less for the

second measurement, or you may be reading it from a slightly different angle.2 This

variation can be modelled by treating our measurement as a random variable char-

acterised by its mean – the value we are trying to measure – and variance σ2, both of

which are unknown but can be estimated. It follows from this model that if you mea-

sure a person’s height many times, the sample variance in the measured values con-

verges to σ2. A standard trick is to average k measurements, as this gets the variance

in your estimate down to σ2/k. What this means is that, if you repeated this averaging

for many sets of k measurements, the averages have a sample variance σ2/k. Crucially,

2Some variation is also due to the fact that somebody tends to be taller fresh out of bed in the morning

than at the end of a day of sitting and standing up, but I ignore that here and assume an unambiguous true

value that we are trying to measure.
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this assumes that your measurements are independent: if you are introducing a sys-

tematic error by using a faulty tape measure, averaging won’t help!

Now suppose you are measuring a classifier’s accuracy (or its true positive rate, or

the predicted positive rate, or any other evaluation measure discussed earlier), rather

than a person’s height. The natural model here is that each test instance represents a

Bernoulli trial with success probability a, the true but unknown accuracy of the clas-

sifier. We estimate a by counting the number of correctly classified test instances A

and setting â = A/n; notice that A has a binomial distribution. The variance of a single

Bernoulli trial is a(1−a); averaged over n test instances it is a(1−a)/n, assuming the

test instances are chosen independently. We can estimate the variance by plugging in

our estimate for a: this will help us to assess the uncertainty in â, as we shall see in

the next section. Under certain conditions we can improve our estimate by averaging

k independent estimates âi and take their sample variance 1
k−1

∑k
i=1(âi −a)2 instead,

with a = 1
k

∑k
i=1 âi the sample mean.3

How do we obtain k independent estimates of a? If we have plenty of data, we

can sample k independent test sets of size n and estimate a on each of them. Notice

that if we are evaluating a learning algorithm rather than a given model we need to set

aside training data which needs to be separate from the test data. If we don’t have a

lot of data, the following cross-validation procedure is often applied: randomly parti-

tion the data in k parts or ‘folds’, set one fold aside for testing, train a model on the

remaining k −1 folds and evaluate it on the test fold. This process is repeated k times

until each fold has been used for testing once. This may seem curious at first since

we are evaluating k models rather than a single one, but this makes sense if we are

evaluating a learning algorithm (whose output is a model, so we want to average over

models) rather than a single model (whose outputs are instance labels, so we want to

average over those). By averaging over training sets we get a sense of the variance of the

learning algorithm (i.e., its dependence on variations in the training data), although it

should be noted that the training sets in cross-validation have considerable overlap

and are clearly not independent. Once we are satisfied with the performance of our

learning algorithm, we can run it over the entire data set to obtain a single model.

Cross-validation is conventionally applied with k = 10, although this is somewhat

arbitrary. A rule of thumb is that individual folds should contain at least 30 instances,

as this allows us to approximate the binomial distribution of the number of correctly

classified instances in a fold by a normal distribution. So if we have fewer than 300

instances we need to adjust k accordingly. Alternatively, we can set k = n and train

on all but one test instance, repeated n times: this is known as leave-one-out cross-

validation (or the jackknife in statistics). This means that in each single-instance ‘fold’

3Notice that we divide by k−1 rather than k in the expression for the sample variance, to account for the

uncertainty in our estimate of the sample mean.
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our accuracy estimate is 0 or 1, but by averaging n of those we get an approximately

normal distribution by the central limit theorem. If we expect the learning algorithm

to be sensitive to the class distribution we should apply stratified cross-validation: this

aims at achieving roughly the same class distribution in each fold. Cross-validation

runs can be repeated for different random partitions into folds and the results aver-

aged again to further reduce variance in our estimates: this is referred to as, e.g., 10

times 10-fold cross-validation. It should be kept in mind that this leads increasingly to

independence assumptions being violated – if we take this too far our accuracy esti-

mate will overfit the given data and not be representative for new data.

Example 12.4 (Cross-validation). The following table gives a possible result of

evaluating three learning algorithms on a data set with 10-fold cross-validation:

Fold Naive Bayes Decision tree Nearest neighbour

1 0.6809 0.7524 0.7164

2 0.7017 0.8964 0.8883

3 0.7012 0.6803 0.8410

4 0.6913 0.9102 0.6825

5 0.6333 0.7758 0.7599

6 0.6415 0.8154 0.8479

7 0.7216 0.6224 0.7012

8 0.7214 0.7585 0.4959

9 0.6578 0.9380 0.9279

10 0.7865 0.7524 0.7455

avg 0.6937 0.7902 0.7606

stdev 0.0448 0.1014 0.1248

The last two lines give the average and standard deviation over all ten folds. We

can see that nearest neighbour has the highest standard deviation. Clearly the

decision tree achieves the best result, but should we completely discard nearest

neighbour?

Cross-validation can also be applied to ROC curves obtained from a scoring clas-

sifier. This is because every instance participates in exactly one test fold and receives

a score from the corresponding model. We can therefore simply merge all test folds

which produces a single ranking.
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12.3 How to interpret it

Once we have estimates of a relevant evaluation measure for our models or learning

algorithms we can use them to select the best one. The fundamental issue here is how

to deal with the inherent uncertainty in these estimates. We will discuss two key con-

cepts: confidence intervals and significance tests. An understanding of these concepts

is necessary if you want to appreciate current practice in interpreting results from ma-

chine learning experiments – however, it is good to realise that current practice is com-

ing under increasing scrutiny. It should also be noted that the methods described here

represent only a tiny fraction of the vast spectrum of possibilities.

Suppose our estimate â follows a normal distribution around the true mean a with

standard deviation σ. Assuming for the moment that we know these parameters, we

can calculate for any interval the likelihood of the estimate falling in the interval, by

calculating the area under the normal density function in that interval. For example,

the likelihood of obtaining an estimate within±1 standard deviation around the mean

is 68%. Thus, if we take 100 estimates from independent test sets, we expect 68 of

them to be within one standard deviation on either side of the mean – or equivalently,

we expect the true mean to fall within one standard deviation on either side of the

estimate in 68 cases. This is called the 68% confidence interval of the estimate. For

two standard deviations the confidence level is 95% – these values can be looked up in

probability tables or calculated using statistical packages such as Matlab or R. Notice

that confidence intervals for normally distributed estimates are symmetric because the

normal distribution is symmetric, but this is not generally the case: e.g., the binomial

distribution is asymmetric (except for p = 1/2). Notice also that, in case of symmetry,

we can easily change the interval into a one-sided interval: for example, we expect the

mean to be more than one standard deviation above the estimate in 16 cases out of 100,

which gives a one-sided 84% confidence interval from minus infinity to the mean plus

one standard deviation.

More generally, in order to construct confidence intervals we need to know (i) the

sampling distribution of the estimates, and (ii) the parameters of that distribution. We

saw previously that accuracy estimated from a single test set with n instances follows a

scaled binomial distribution with variance â(1− â)/n. This would lead to asymmetric

confidence intervals, but the skew in the binomial distribution is only really noticeable

if na(1−a)< 5: if that is not the case the normal distribution is a good approximation

for the binomial one. So we use the binomial expression for the variance and use the

normal distribution to construct the confidence intervals.

Example 12.5 (Confidence interval). Suppose 80 out of 100 test instances are
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correctly classified. We have â = 0.80 with an estimated variance of â(1− â)/n =
0.0016 or a standard deviation of

�
â(1− â)/n = 0.04. Notice nâ(1− â) = 16 ≥ 5

so the 68% confidence interval is estimated as [0.76,0.84] in accordance with the

normal distribution, and the 95% interval is [0.72,0.88].

If we reduce the size of our test sample to 50 and find that 40 test instances

are correctly classified, then the standard deviation increases to 0.06 and the 95%

confidence interval widens to [0.68,0.92]. If the test sample drops to less than 30

instances we would need to construct an asymmetric confidence interval using

tables for the binomial distribution.

Notice that confidence intervals are statements about estimates rather than state-

ments about the true value of the evaluation measure. The statement ‘assuming the true

accuracy a is 0.80, the probability that a measurement m falls in the interval [0.72,0.88]

is 0.95’ is correct, but we cannot reverse this to say ‘assuming a measurement m = 0.80,

the probability that the true accuracy falls in the interval [0.72,0.88] is 0.95’. To infer

P (a ∈ [0.72,0.88]|m = 0.80) from P (m ∈ [0.72,0.88]|a = 0.80) we must somehow invoke

Bayes’ rule, but this requires meaningful prior distributions over both true accuracies

and measurements, which we don’t generally have.

We can, however, use similar reasoning to test a particular null hypothesis we have

about a. For example, suppose our null hypothesis is that the true accuracy is 0.5

and that the standard deviation derived from the binomial distribution is therefore�
0.5(1−0.5)/100 = 0.05. Given our estimate of 0.80, we then calculate the p-value,

which is the probability of obtaining a measurement of 0.80 or higher given the null

hypothesis. The p-value is then compared with a pre-defined significance level, say

α= 0.05: this corresponds to a confidence of 95%. The null hypothesis is rejected if the

p-value is smaller than α; in our case this applies since p = 1.9732 ·10−9.

This idea of significance testing can be extended to learning algorithms evaluated

in cross-validation. For a pair of algorithms we calculate the difference in accuracy

on each fold. The difference between two normally distributed variables is also nor-

mally distributed. Our null hypothesis is that the true difference is 0, so that any dif-

ferences in performance are attributed to chance. We calculate a p-value using the

normal distribution, and reject the null hypothesis if the p-value is below our signifi-

cance level α. The one complication is that we don’t have access to the true standard

deviation in the differences, which therefore needs to be estimated. This introduces

additional uncertainty into the process, which means that the sampling distribution is

bell-shaped like the normal distribution but slightly more heavy-tailed. This distribu-



12.3 How to interpret it 353

tion is referred to as Student’s t-distribution or simply the t-distribution.4 The extent

to which the t-distribution is more heavy-tailed than the normal distribution is regu-

lated by the number of degrees of freedom: in our case this is equal to 1 less than the

number of folds (since the final fold is completely determined by the other ones). The

whole procedure is known as the paired t-test.

Example 12.6 (Paired t -test). The following table demonstrates the calculation

of a paired t-test on the results in Example 12.4. The numbers show pairwise

differences in each fold. The null hypothesis in each case is that the differences

come from a normal distribution with mean 0 and unknown standard deviation.

Fold NB−DT NB−NN DT−NN

1 -0.0715 -0.0355 0.0361

2 -0.1947 -0.1866 0.0081

3 0.0209 -0.1398 -0.1607

4 -0.2189 0.0088 0.2277

5 -0.1424 -0.1265 0.0159

6 -0.1739 -0.2065 -0.0325

7 0.0992 0.0204 -0.0788

8 -0.0371 0.2255 0.2626

9 -0.2802 -0.2700 0.0102

10 0.0341 0.0410 0.0069

avg -0.0965 -0.0669 0.0295

stdev 0.1246 0.1473 0.1278

p-value 0.0369 0.1848 0.4833

The p-value in the last line of the table is calculated by means of the t-

distribution with k −1 = 9 degrees of freedom, and only the difference between

the naive Bayes and decision tree algorithms is found significant at the α = 0.05

level.

4It was published by William Sealy Gosset in 1908 under the pseudonym ‘Student’ because his employer,

the Guinness brewery in Dublin, did not want the competition to know that they were using statistics.
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Interpretation of results over multiple data sets

The t-test can be applied for comparing two learning algorithms over a single data set,

typically using results obtained in cross-validation. It is not appropriate for multiple

data sets because performance measures cannot be compared across data sets (they

are not ‘commensurate’). In order to compare two learning algorithms over multiple

data sets we need to use a test specifically designed for that purpose such as Wilcoxon’s

signed-rank test. The idea is to rank the performance differences in absolute value,

from smallest (rank 1) to largest (rank n). We then calculate the sum of ranks for posi-

tive and negative differences separately, and take the smaller of these sums as our test

statistic. For a large number of data sets (at least 25) this statistic can be converted

to one which is approximately normally distributed, but for smaller numbers the crit-

ical value (the value of the statistic at which the p-value equals α) can be found in a

statistical table.

Example 12.7 (Wilcoxon’s signed-rank test). We use the performance differ-

ences between naive Bayes and decision tree as in the previous example, but

now assume for the sake of argument that they come from 10 different data sets.

Data set NB−DT Rank

1 -0.0715 4

2 -0.1947 8

3 0.0209 1

4 -0.2189 9

5 -0.1424 6

6 -0.1739 7

7 0.0992 5

8 -0.0371 3

9 -0.2802 10

10 0.0341 2

The sum of ranks for positive differences is 1+5+2= 8 and for negative differ-

ences 4+8+9+6+7+3+10= 47. The critical value for 10 data sets at the α= 0.05

level is 8, which means that if the smallest of the two sums of ranks is less than or

equal to 8 the null hypothesis that the ranks are distributed the same for positive

and negative differences can be rejected. This applies in this case, so we con-

clude that the performance difference between naive Bayes and decision trees is
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significant according to Wilcoxon’s signed-rank test (as it was for the paired t-test

in Example 12.6).

The Wilcoxon signed-rank test assumes that larger performance differences are better

than smaller ones, but otherwise makes no assumption about their commensurabil-

ity – in other words, performance differences are treated as ordinals rather than real-

valued. Furthermore, there is no normality assumption regarding the distribution of

these differences5 which means, among other things, that the test is less sensitive to

outliers.

If we want to compare k algorithms over n data sets we need to use specialised sig-

nificance tests to avoid that our confidence level drops with each additional pairwise

comparison between algorithms. The Friedman test is designed for exactly this situ-

ation. Like the Wilcoxon signed-rank test it is based on ranked rather than absolute

performance, and hence makes no assumption regarding the distribution of the per-

formance measurements.6 The idea is to rank the performance of all k algorithms per

data set, from best performance (rank 1) to worst performance (rank k). Let Ri j denote

the rank of the j -th algorithm on the i -th data set, and let R j =
(∑

i Ri j
)

/n be the aver-

age rank of the j -th algorithm. Under the null hypothesis that all algorithms perform

equally these average ranks R j should be the same. In order to test this we calculate

the following quantities:

1. the average rank R = 1

nk

∑
i j

Ri j = k+1

2
;

2. the sum of squared differences n
∑

j
(R j −R)2; and

3. the sum of squared differences
1

n(k−1)

∑
i j

(Ri j −R)2.

There is an analogy with clustering here, in that the second quantity measures the

spread between the rank ‘centroids’ – which we want to be large – and the third quan-

tity measures the spread over all ranks. The Friedman statistic is the ratio of the former

and latter quantities.

5In statistical terminology the test is ‘non-parametric’ as opposed to a parametric test such as the t-test

which assumes a particular distribution. Parametric tests are generally more powerful when that assumed

distribution is appropriate but can be misleading when it is not.
6A well-known parametric alternative to the Friedman test is analysis of variance (ANOVA).
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Example 12.8 (Friedman test). We use the data from Example 12.4, assuming it

comes from different data sets rather than cross-validation folds. The following

table shows the ranks in brackets:

Data set Naive Bayes Decision tree Nearest neighbour

1 0.6809 (3) 0.7524 (1) 0.7164 (2)

2 0.7017 (3) 0.8964 (1) 0.8883 (2)

3 0.7012 (2) 0.6803 (3) 0.8410 (1)

4 0.6913 (2) 0.9102 (1) 0.6825 (3)

5 0.6333 (3) 0.7758 (1) 0.7599 (2)

6 0.6415 (3) 0.8154 (2) 0.8479 (1)

7 0.7216 (1) 0.6224 (3) 0.7012 (2)

8 0.7214 (2) 0.7585 (1) 0.4959 (3)

9 0.6578 (3) 0.9380 (1) 0.9279 (2)

10 0.7865 (1) 0.7524 (2) 0.7455 (3)

avg rank 2.3 1.6 2.1

We have R = 2, n
∑

j (R j −R)2 = 2.6 and 1
n(k−1)

∑
i j (Ri j −R)2 = 1, so the Friedman

statistic is 2.6. The critical value for k = 3 and n = 10 at the α = 0.05 level is 7.8,

so we cannot reject the null hypothesis that all algorithms perform equally. In

comparison, if the average ranks were 2.7, 1.3 and 2.0, then the null hypothesis

would be rejected at that significance level.

The Friedman test tells us whether the average ranks as a whole display significant

differences, but further analysis is needed on a pairwise level. This is achieved by ap-

plying a post-hoc test once the Friedman test gives significance. The idea is to calculate

the critical difference (CD) against which the difference in average rank between two

algorithms is compared. The Nemenyi test calculates the critical difference as follows:

CD= qα

√
k(k+1)

6n
(12.1)

where qα depends on the significance level α as well as k: for α = 0.05 and k = 3 it

is 2.343, leading to a critical difference of 1.047 in our example. If the average ranks

are 2.7, 1.3 and 2.0, then only the difference between the first and second algorithm

exceeds the critical difference. Figure 12.1 (top) demonstrates a useful visual represen-

tation of the results of the Nemenyi post-hoc test.
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Figure 12.1. (top) Critical difference diagram for the pairwise Nemenyi test. Average ranks for

each algorithm are plotted on the real axis. The critical difference is shown as a bar above the

figure, and any group of consecutively ranked algorithms such that the outermost ones are less

than the critical difference apart are connected by a horizontal thick line. The diagram shows,

e.g., that the performance of the top ranked algorithm is significantly better than the bottom

three. (bottom) Critical difference diagram for the Bonferroni–Dunn test with CN2 as control.

The critical differences are now drawn symmetrically around the average rank of the control.

The top ranked algorithm is significantly better than the control, and the bottom ranked one is

significantly worse. (Figures courtesy of Tarek Abudawood (2011)).

A variant of the Nemenyi test called the Bonferroni–Dunn test can be applied when

we perform pairwise tests only against a control algorithm. The calculation of the crit-

ical difference is the same, except qα is adjusted to reflect the fact that we make k −1

pairwise comparisons rather than k(k −1)/2. For example, for α = 0.05 and k = 3 we

have qα = 2.241, which is slightly lower than the value used for the Nemenyi test, lead-

ing to a tighter critical difference. Figure 12.1 (bottom) shows a graphical representa-

tion of the Bonferroni–Dunn post-hoc test.

12.4 Machine learning experiments: Summary and further read-

ing

In this chapter we have taken a look at how we can use data to answer questions

about the performance of models and learning algorithms. A ‘machine learning ex-

perimenter’ needs to address three questions: (i) what to measure, (ii) how to measure

it, and (iii) how to interpret it. An excellent source – particularly for the last two ques-

tions – is Japkowicz and Shah (2011).
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� In order to decide what to measure, we first need to explicate our experimental

objective. We also need to consider the operating context: performance aspects

that might change when using the model. For example, the operating context

might be given by the class distribution, but we may have no prior knowledge

telling us that certain distributions are more likely than others. Example 12.1 on

p.345 demonstrated that in such a case average recall would be more appropriate

as a performance measure, even if the experimental objective is accuracy. We

also looked at the difference between a precision–recall analysis which ignores

the true negatives, and a true/false positive rate analysis which takes them into

account; a fuller analysis is provided by Davis and Goadrich (2006). The relation

between accuracy as experimental objective and AUC as performance measure

is studied by Hernández-Orallo et al. (2011).

� Once we decided what to measure, we need to establish a measuring protocol.

The most common approach is k-fold cross-validation, which divides the data

into k folds, repeatedly trains on k −1 of those and tests on the remaining one.

It is of paramount importance that there be no information leak between the

training data used to learn the model and the test data used to evaluate it. A

common mistake is to use cross-validation to find the best setting of one or more

parameters of a learning algorithm, say the complexity parameter of a support

vector machine. This is methodologically wrong as parameter tuning should be

carried out as part of the training process, without any access to the test data.

A methodologically sound option is to use internal cross-validation by setting

aside a validation fold in each cross-validation run for parameter tuning. Exper-

imental studies regarding cross-validation are carried out by Dietterich (1998)

and Bouckaert and Frank (2004): the former recommends five times two-fold

cross-validation and the latter ten times ten-fold. ROC curves can be drawn in

cross-validation as each instance appears in a test fold exactly once, and so we

can collect the scores on all test folds. Fawcett (2006) considers alternatives in-

cluding horizontal and vertical averaging.

� In the context of interpreting experimental results we looked at confidence inter-

vals and significance tests. Confidence intervals have a clear statistical interpre-

tation: they quantify the likelihood of a measurement falling in a particular inter-

val, assuming a particular true value. Significance tests extend this to reasoning

about a particular null hypothesis, such as ‘these learning algorithms do not per-

form differently on these data sets’. Significance tests are designed for particular

protocols: the t-test can be used for evaluating two learning algorithms on two

data sets, Wilcoxon’s signed-rank test is applicable for comparing two algorithms

over multiple data sets, and Friedman’s test (or analysis of variance) compares

multiple algorithms over multiple data sets. An excellent discussion of these and
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related tests is provided by Demšar (2006).

� It should be mentioned that there is much discussion on the use of significance

tests in machine learning, and on the wider issue regarding machine learning

as an experimental science. The importance of experiments in machine learn-

ing was stressed early on by Pat Langley in two influential papers (Langley, 1988;

Kibler and Langley, 1988); however, more recently he expressed criticism at the

way experimental methodology in machine learning has become rather inflex-

ible (Langley, 2011). Other authors critical of current practice include Drum-

mond (2006) and Demšar (2008).

�



Epilogue: Where to go from here

A
ND SO WE HAVE come to the end of our journey through the ‘making sense of data’ land-

scape. We have seen how machine learning can build models from features for solving

tasks involving data. We have seen how models can be predictive or descriptive; learn-

ing can be supervised or unsupervised; and models can be logical, geometric, prob-

abilistic or ensembles of such models. Now that I have equipped you with the basic

concepts to understand the literature, there is a whole world out there for you to ex-

plore. So it is only natural for me to leave you with a few pointers to areas you may

want to learn about next.

One thing that we have often assumed in the book is that the data comes in a form

suitable for the task at hand. For example, if the task is to label e-mails we conveniently

learn a classifier from data in the form of labelled e-mails. For tasks such as class prob-

ability estimation I introduced the output space (for the model) as separate from the

label space (for the data) because the model outputs (class probability estimates) are

not directly observable in the data and have to be reconstructed. An area where the

distinction between data and model output is much more pronounced is reinforce-

ment learning. Imagine you want to learn how to be a good chess player. This could

be viewed as a classification task, but then you require a teacher to score every move.

What happens in practical situations is that every now and then you receive a reward

or a punishment – e.g., winning the game, or losing one of your pieces. The challenge is

then to assign credit or blame to individual moves that led to such rewards or punish-

ments being incurred. Reinforcement learning is a principled way to learn policies for

deciding which action to take in which situation or state. This is currently one of the

360
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most active subfields of machine learning. The standard reference is Sutton and Barto

(1998), and you should have no trouble finding more recent workshop proceedings or

journal special issues.

There are many other tasks that require us to relax some of our assumptions. For

example, in multi-class classification we assume that classes are mutually exclusive. In

multi-label classification we drop that assumption, so that an instance can be labelled

with an arbitrary subset of labels. This is natural, e.g., when tagging online material

such as blog posts. The dependence between labels is an additional source of informa-

tion: for example, knowing that the tag ‘machine learning’ applies makes the tag ‘rein-

forcement learning’ more likely. Multi-label learning aims to exploit this information

by learning the dependence between the labels as well as the mapping between the

features and each individual label. For relevant work in the area see, e.g., Tsoumakas

et al. (2012). A related area is preference learning, where the goal is to learn instance-

dependent preferences between class labels (Fürnkranz and Hüllermeier, 2010). In-

creasing the complexity of the model outputs even further, we arrive at the general

area of structured output prediction (Bakir et al., 2007).

Going back to multi-label learning, although each label establishes a separate bi-

nary classification task, the goal is to avoid learning completely separate models for

each task. This is, in fact, a special case of what is called multi-task learning. For ex-

ample, each task could be to predict a separate real-valued target variable on the same

instance space, and the learner is aiming to exploit, say, correlations between the tar-

get variables. Closely related to this is the area of transfer learning, which studies the

transfer of models between tasks. A relevant reference for both areas is Silver and Ben-

nett (2008).

Another assumption that deserves closer scrutiny is the availability of data in a sin-

gle batch. In online learning, also called incremental learning, the model needs to be

updated each time a new data point arrives. One application of this is in the area of

sequence prediction (Cesa-Bianchi and Lugosi, 2006). With the increase in sensor data

this setting is rapidly gaining importance, as can be witnessed from the growing area

of learning from data streams (Gama and Gaber, 2007). Sometimes it is convenient to

give the learner a more active role in data acquisition, for example by issuing queries

for examples to be labelled by the teacher. Active learning studies exactly this setting

(Settles, 2011).

Ultimately, machine learning is – and, in all likelihood, will remain – a research area

at the nexus of two distinct developments. On the one hand, it is widely recognised that

the ability for learning and self-training is necessary for achieving machine intelligence

in any form. An area in machine learning that has this quest at heart is deep learning,

which aims at employing hierarchies of autonomously constructed features (Bengio,

2009). On the other hand, machine learning is an indispensable tool for dealing with
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the data deluge. Building machine learning models is an essential step in the data

mining process, which poses specific challenges such as being able to deal with ‘big

data’ and cloud computing platforms. I hope that this book has kindled your interest

in one of these exciting developments.

�



Important points to remember

Machine learning is the systematic study of algorithms and systems that im-

prove their knowledge or performance with experience. 3

Tasks are addressed by models, whereas learning problems are solved by learn-

ing algorithms that produce models. 12

Machine learning is concerned with using the right features to build the right

models that achieve the right tasks. 12

Models lend the machine learning field diversity, but tasks and features give it

unity. 13

Use likelihoods if you want to ignore the prior distribution or assume it uniform,

and posterior probabilities otherwise. 28

Everything should be made as simple as possible, but not simpler. 30

In a coverage plot, classifiers with the same accuracy are connected by line seg-

ments with slope 1. 59

In a normalised coverage plot, line segments with slope 1 connect classifiers

with the same average recall. 60

The area under the ROC curve is the ranking accuracy. 67

Grouping model ROC curves have as many line segments as there are instance

space segments in the model; grading models have one line segment for each

example in the data set. 69

363
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By decreasing a model’s refinement we sometimes achieve better ranking per-

formance. 69

Concavities in ROC curves can be remedied by combining segments through

tied scores. 77

To avoid overfitting, the number of parameters estimated from the data must be

considerably less than the number of data points. 93

In descriptive learning the task and learning problem coincide. 95

The LGG is the most conservative generalisation that we can learn from the data. 108

Every concept between the least general one and one of the most general ones

is also a possible hypothesis. 112

An upward path through the hypothesis space corresponds to a coverage curve. 114

Decision trees are strictly more expressive than conjunctive concepts. 131

One way to avoid overfitting and encourage learning is to deliberately choose a

restrictive hypothesis language. 131

The ranking obtained from the empirical probabilities in the leaves of a decision

tree yields a convex ROC curve on the training data. 138

Entropy and Gini index are sensitive to fluctuations in the class distribution,�
Gini isn’t. 147

Rule lists are similar to decision trees in that the empirical probabilities associ-

ated with each rule yield convex ROC and coverage curves on the training

data. 166

(XTX)−1 acts as a transformation that decorrelates, centres and normalises the

features. 202

Assuming uncorrelated features effectively decomposes a multivariate regres-

sion problem into d univariate problems. 203

A general way of constructing a linear classifier with decision boundary w ·x= t

is by constructing w as M−1(n⊕μ⊕−n�μ�). 207

In the dual, instance-based view of linear classification we are learning instance

weights αi rather than feature weights w j . 210

A minimal-complexity soft margin classifier summarises the classes by their class

means in a way very similar to the basic linear classifier. 219

The basic linear classifier can be interpreted from a distance-based perspective

as constructing exemplars that minimise squared Euclidean distance within

each class, and then applying a nearest-exemplar decision rule. 239



Important points to remember 365

Probabilities do not have to be interpreted as estimates of relative frequencies,

but can carry the more general meaning of (possibly subjective) degrees of

belief. 265

For uncorrelated, unit-variance Gaussian features, the basic linear classifier is

Bayes-optimal. 271

The negative logarithm of the Gaussian likelihood can be interpreted as a squared

distance. 271

A good probabilistic treatment of a machine learning problem achieves a bal-

ance between solid theoretical foundations and the pragmatism required to

obtain a workable solution. 273

An often overlooked consequence of having uncalibrated probability estimates

such as those produced by naive Bayes is that both the ML and MAP decision

rules become inadequate. 277

Tree models ignore the scale of quantitative features, treating them as ordinal. 305

Fitting data to a fixed linear decision boundary in log-odds space by means of

feature calibration can be understood as training a naive Bayes model. 318

Low-bias models tend to have high variance, and vice versa. 338

Bagging is predominantly a variance-reduction technique, while boosting is pri-

marily a bias-reduction technique. 339

Machine learning experiments pose questions about models that we try to an-

swer by means of measurements on data. 343

The combination of precision and recall, and therefore the F-measure, is insen-

sitive to the number of true negatives. 346

Confidence intervals are statements about estimates rather than statements about

the true value of the evaluation measure. 352
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Fürnkranz, J., Gamberger, D. and Lavrač, N. (2012). Foundations of Rule Learning.

Springer. 192

Fürnkranz, J. and Hüllermeier, E. (eds.) (2010). Preference Learning. Springer. 361

Fürnkranz, J. and Widmer, G. (1994). Incremental reduced error pruning. In Proceed-

ings of the Eleventh International Conference on Machine Learning (ICML 1994), pp.

70–77. 192

Gama, J. and Gaber, M.M. (eds.) (2007). Learning from Data Streams: Processing Tech-

niques in Sensor Networks. Springer. 361

Ganter, B. and Wille, R. (1999). Formal Concept Analysis: Mathematical Foundations.

Springer. 127
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�
Gini, see impurity measure,

�
Gini

0–1 loss, 62

0-norm, 234

1-norm, 234, 239

2-norm, 234, 239

abstraction, 306

accuracy, 19, 54, 57

as a weighted average

Example 2.1, 56

expected

Example 12.3, 347

Example 12.1, 346

macro-averaged, 60

ranking, see ranking accuracy

active learning, 122, 361

adjacent violators, 77

affine transformation, 195

agglomerative merging, 312

AggloMerge(S, f ,Q)

Algorithm 10.2, 312

aggregation

in structured features, 306

Aleph, see ILP systems

analysis of variance, 355

anti-unification, 123

Apriori, see association rule algorithms

AQ, see rule learning systems

arithmetic mean

minimises squared Euclidean dis-

tance, 291

Theorem 8.1, 238

association rule, 15, 184

association rule algorithms

Apriori, 193

Warmr, 193

association rule discovery

Example 3.12, 102

AssociationRules(D, f0,c0)

Algorithm 6.7, 185

at least as general as, 105

attribute, see feature

AUC, 67

multi-class

Example 3.5, 88

average recall, see recall, average, 101

backtracking search, 133

bag of words, 41

bagging, 156, 331–333

Bagging(D,T,A )

Algorithm 11.1, 332
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basic linear classifier, 21, 207–228, 238,

241, 242, 269, 317, 321, 332, 334–

336, 339, 364

Bayes-optimality, 271

kernel trick, 43

Bayes’ rule, 27

Bayes-optimal, 29, 30, 265

basic linear classifier, 271

beam search, 170

Bernoulli distribution, 148, 274

multivariate, 273

Bernoulli trial, 148, 273

Bernoulli, Jacob, 45, 274

BestSplit-Class(D,F )

Algorithm 5.2, 137

bias, 94

bias–variance dilemma, 93, 338

big data, 362

bigram, 322

bin, 309

binomial distribution, 274

bit vector, 273

Bonferroni–Dunn test, 357

boosting, 63, 334–338

weight updates

Example 11.1, 334

Boosting(D,T,A )

Algorithm 11.3, 335

bootstrap sample, 331

breadth-first search, 183

Brier score, 74

C4.5, see tree learning systems

calibrating classifier scores, 223, 316

calibration, 220

isotonic, 78, 223, 286, 318

logistic, 286, 316

loss, 76

map, 78

CART, see tree learning systems

Cartesian product, 51

categorical distribution, 274

CD, see critical difference

central limit theorem, 220, 350

central moment, 303

centre around zero, 24, 198, 200, 203,

324

centre of mass, 24

centroid, 97, 238

characteristic function, 51

Chebyshev distance, 234

Chebyshev’s inequality, 301

Chervonenkis, Alexey, 125

chicken-and-egg problem, 287

cityblock distance, see Manhattan dis-

tance

class

imbalance

Example 2.4, 67

label, 52

ratio, 57, 58, 61, 62, 67, 70, 71, 142,

143, 147, 221

class probability estimation, 360

class probability estimator, 72

squared error

Example 2.6, 74

tree, 141

classification

binary, 52

multi-class, 14, 82

classifier, 52

clause, 105

cloud computing, 362

clustering, 14

agglomerative, 255, 310

descriptive, 18

evaluation

Example 3.10, 99

predictive, 18
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representation

Example 3.9, 98

stationary point, 249

Example 8.5, 249

clustering tree, 253

using a dissimilarity matrix

Example 5.5, 153

using Euclidean distance

Example 5.6, 155

CN2, see rule learning systems

CNF, see conjunctive normal form

comparable, 51

complement, 178

component, 266

computational learning theory, 124

concavity, 76

concept, 157

closed, 117, 183

complete, 113

conjunctive, 106

Example 4.1, 106

consistent, 113

concept learning, 52, 104

negative examples

Example 4.2, 110

conditional independence, 281

conditional likelihood, 283

conditional random field, 296

confidence, 57, 184

confidence interval, 351

Example 12.5, 352

confusion matrix, 53

conjugate prior, 265

conjunction ∧ , 34, 105

conjunctive normal form, 105, 119

conjunctively separable, 115

constructive induction, 131

contingency table, 53

continuous feature, see feature, quanti-

tative

convex, 213, 241

hull, 78

lower, 309

loss function, 63

ROC curve, 76, 138

set, 113, 183

correlation, 151

correlation coefficient, 45, 267, 323

cosine similarity, 259

cost ratio, 71, 142

count vector, 275

counter-example, 120

covariance, 45, 198

covariance matrix, 200, 202, 204, 237,

267, 269, 270

coverage counts, 86

as score

Example 3.4, 87

coverage curve, 65

coverage plot, 58

covering algorithm, 163

weighted, see weighted covering

covers, 105, 182

critical difference, 356

critical value, 354

cross-validation, 19, 349

Example 12.4, 350

internal, 358

stratified, 350

curse of dimensionality, 243

d-prime, 316

data mining, 182, 362

data set characteristics, 340

data streams, 361

De Morgan laws, 105, 131

decile, 301

decision boundary, 4, 14

decision list, 34, 192
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decision rule, 26

decision stump, 339

decision threshold

tuning

Example 2.5, 71

decision tree, 33, 53, 101, 314

decoding, 83

loss-based, 85

deduction, 20

deep learning, 361

default rule, 35, 161

degree of freedom

in t-distribution, 353

in contingency table, 58

dendrogram, 254

Definition 8.4, 254

descriptive clustering, 96, 245

descriptive model, 17

dimensionality reduction, 326

Dirichlet prior, 75

discretisation, 155

agglomerative, 310

agglomerative merging

Example 10.7, 313

bottom–up, 310

divisive, 310

equal-frequency, 309

equal-width, 310

recursive partitioning

Example 10.6, 311

top–down, 310

disjunction ∨ , 34, 105

disjunctive normal form, 105

dissimilarity, 96, 152

cluster, 152

split, 152

distance, 23

elliptical

Example 8.1, 237

Euclidean, 23, 305

Manhattan, 25

distance metric, 235, 305

Definition 8.2, 236

distance weighting, 244

divide-and-conquer, 35, 133, 138, 161

DKM, 156

DNF, see disjunctive normal form

dominate, 59

DualPerceptron(D)

Algorithm 7.2, 209

Eddington, Arthur, 343

edit distance, 235

eigendecomposition, 325

Einstein, Albert, 30, 343

EM, see Expectation-Maximisation

empirical probability, 75, 133, 135, 138

entropy, 159, 294

as an impurity measure, see impu-

rity measure, entropy

equivalence class, 51

equivalence oracle, 120

equivalence relation, 51

error rate, 54, 57

error-correcting output codes, 102

estimate, 45

Euclidean distance, 234

European Conference on Machine Learn-

ing, 2

European Conference on Principles and

Practice of Knowledge Discov-

ery in Databases, 2

evaluation measures, 344

for classifiers, 57

example, 50

exceptional model mining, 103

excess kurtosis, see kurtosis

exemplar, 25, 97, 132, 238

Expectation-Maximisation, 97, 289, 322
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expected value, 45, 267

experiment, 343

experimental objective, 344

explanation, 35

explanatory variable, see feature

exponential loss, 63, 337

extension, 105

F-measure, 99, 300

insensitivity to true negatives, 346

false alarm rate, 55, 57

false negative, 55

false negative rate, 55, 57

false positive, 55

false positive rate, 55, 57

feature, 13, 50, 262

binarisation, 307

Boolean, 304

calibration, 314

categorical, 155, 304

construction, 41, 50

decorrelation, 202, 237, 270, 271

discretisation, 42, 309

discretisation, supervised, 310

discretisation, unsupervised, 309

domain, 39, 50

list, 33

normalisation, 202, 237, 270, 271,

314

ordinal, 233, 304

quantitative, 304

space, 225

structured, 306

Example 10.4, 306

thresholding, 308

thresholding, supervised, 309

thresholding, unsupervised, 308

transformation, 307

two uses of, 41

Example 1.8, 41

unordering, 307

feature calibration, 277

categorical

Example 10.8, 315

isotonic

Example 10.11, 321

Example 10.10, 320

logistic

Example 10.9, 318

feature selection, 243

backward elimination, 324

filter, 323

forward selection, 324

Relief, 323

wrapper, 324

feature tree, 32, 132, 155

Definition 5.1, 132

complete, 33

growing

Example 5.2, 139

labelling

Example 1.5, 33

first-order logic, 122

FOIL, see ILP systems

forecasting theory, 74

frequency, see support

FrequentItems(D, f0)

Algorithm 6.6, 184

Friedman test, 355

Example 12.8, 356

function estimator, 91

functor, 189

Gauss, Carl Friedrich, 102, 196

Gaussian distribution, 266

Gaussian kernel, 227

bandwidth, 227

Gaussian mixture model, 266, 289

bivariate

Example 9.3, 269
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relation to K -means, 292

univariate

Example 9.2, 269

general, 46

generalised linear model, 296

generality ordering, 105

generative model, 29

geometric median, 238

Gini coefficient, 134

Gini index, 159

as an impurity measure, see impu-

rity measure, Gini index

Gini, Corrado, 134

glb, see greatest lower bound

Golem, see ILP systems

Gosset, William Sealy, 353

gradient, 213, 238

grading model, 52, 92

Gram matrix, 210, 214, 325

greatest lower bound, 108

greedy algorithm, 133

grouping model, 52, 92

GrowTree(D,F ), 152

Algorithm 5.1, 132

Guinness, 353

HAC(D,L)

Algorithm 8.4, 255

Hamming distance, 84, 235, 305

harmonic mean, 99

Hernández-Orallo, José, xvi

hidden variable, 16, 288

hierarchical agglomerative clustering, 314

hinge loss, 63, 217

histogram, 302

Example 10.2, 303

homogeneous coordinates, 4, 24, 195,

201

Horn clause, 105, 119, 189

Horn theory, 119

learning

Example 4.5, 122

Horn(Mb,Eq)

Algorithm 4.5, 120

Horn, Alfred, 105

Hume, David, 20

hyperplane, 21

hypothesis space, 106, 186

ID3, see tree learning systems

ILP, see inductive logic programming

ILP systems

Aleph, 193

FOIL, 193

Golem, 193

Progol, 35, 193

implication → , 105

impurity

Example 5.1, 136

relative, 145

impurity measure, 158�
Gini, 134, 145, 147, 156, 337

entropy, 134, 135, 136, 144, 147, 294

Gini index, 134, 135, 136, 144, 147

as variance, 148

minority class, 134, 135, 159

imputation, 322

incomparable, 51

independent variable, see feature

indicator function, 54

induction, 20

problem of, xvii, 20

inductive bias, 131

inductive logic programming, 189, 307

information content, 293

Example 9.7, 293

information gain, 136, 310, 323

information retrieval, 99, 300, 326, 346

input space, 225

instance, 49
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labelled, 50

instance space, 21, 39, 40, 49

segment, 32, 51, 104, 132

intercept, 195, 198

internal disjunction, 110, 162

Example 4.3, 112

interquartile range, 301, 314

isometric�
Gini, 145

accuracy, 61, 69, 77, 116

average recall, 60, 72

entropy, 145

Gini index, 145

impurity, 159

precision, 167

precision (Laplace-corrected), 170

splitting criteria, 145

item set, 182

closed, 183

frequent, 182

Jaccard coefficient, 15

jackknife, 349

K -means, 25, 96, 97, 247, 259, 289, 310

problem, 246, 247

relation to Gaussian mixture model,

292

K -medoids, 250, 310

k-nearest neighbour, 243

Karush–Kuhn–Tucker conditions, 213

kernel, 43, 323

quadratic

Example 7.8, 225

kernel perceptron, 226

kernel trick, 43

Example 1.9, 44

Kernel-KMeans(D,K )

Algorithm 8.5, 259

KernelPerceptron(D,κ)

Algorithm 7.4, 226

Kinect motion sensing device, 129, 155

KKT, see Karush–Kuhn–Tucker conditions

KMeans(D,K )

Algorithm 8.1, 248

KMedoids(D,K ,Dis)

Algorithm 8.2, 250

kurtosis, 303

L0 norm, see 0-norm

label space, 50, 360

Lagrange multiplier, 213

landmarking, 342

Langley, Pat, 359

Laplace correction, 75, 138, 141, 147, 170,

265, 274, 279, 286

lasso, 205

latent semantic indexing, 327

latent variable, see hidden variable

lattice, 108, 182, 186

law of large numbers, 45

learnability, 124

learning from entailment, 128

learning from interpretations, 128

learning model, 124

learning rate, 207

LearnRule(D), 169, 190

Algorithm 6.2, 164

LearnRuleForClass(D,Ci )

Algorithm 6.4, 171

LearnRuleList(D), 169, 190

Algorithm 6.1, 163

LearnRuleSet(D)

Algorithm 6.3, 171

least general generalisation, 108, 112, 115–

117, 131

least upper bound, 108

least-squares classifier, 206, 210

univariate

Example 7.4, 206
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least-squares method, 196

ordinary, 199

total, 199, 273

least-squares solution to a linear regres-

sion problem, 272

leave-one-out, 349

Lebowski, Jeffrey, 16

level-wise search, 183

Levenshtein distance, 235

LGG, see least general generalisation

LGG-Conj(x, y)

Algorithm 4.2, 110

LGG-Conj-ID(x, y)

Algorithm 4.3, 112

LGG-Set(D)

Algorithm 4.1, 108

lift, 186

likelihood function, 27, 305

likelihood ratio, 28

linear

approximation, 195

combination, 195

function, 195

model, 194

transformation, 195

linear classifier, 5, 21, 38, 40, 43, 81, 82,

207–223, 263, 282, 314, 333–340

Example 1, 3

coverage curve, 67

general form, 207, 364

geometric interpretation, 220

logistic calibration

Example 7.7, 223

margin, 22

VC-dimension, 126

linear discriminants, 21

linear regression, 92, 151

bivariate

Example 7.3, 203

univariate

Example 7.1, 198

linear, piecewise, 195

linearly separable, 207

linkage function, 254

Definition 8.5, 254

Example 8.7, 256

monotonicity, 257

literal, 105

Lloyd’s algorithm, 247

local variables, 189, 306

log-likelihood, 271

log-linear models, 223

log-odds space, 277, 317

logistic function, 221

logistic regression, 223, 282

univariate

Example 9.6, 285

loss function, 62, 93

loss-based decoding

Example 3.3, 86

Lp norm, see p-norm

LSA, see latent semantic indexing

lub, see least upper bound

m-estimate, 75, 141, 147, 279

Mach, Ernst, 30

machine intelligence, 361

machine learning

definition of, 3

univariate, 52

Mahalanobis distance, 237, 271

majority class, 33, 35, 53, 56

Manhattan distance, 234

manifold, 243

MAP, see maximum a posteriori

margin

of a classifer, 62

of a decision boundary, 211

of a linear classifier, 22
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of an example, 62, 211, 339

margin error, 216

marginal, 54, 186

marginal likelihood, 29

Example 1.4, 30

market basket analysis, 101

matrix

diagonal, 202

inverse, 267

rank, 326

matrix completion, 327

matrix decomposition, 17, 97, 324–327

Boolean, 327

non-negative, 328

with constraints, 326

maximum a posteriori, 28, 263

maximum likelihood, 28

maximum-likelihood estimation, 271, 287

in linear regression, 199

maximum-margin classifier

Example 7.5, 216

soft margin

Example 7.6, 219

mean, 267, 299

arithmetic, 300

geometric, 300

harmonic, 300

mean squared error, 74

median, 267, 299

medoid, 153, 238

membership oracle, 120

meta-model, 339

MGConsistent(C , N )

Algorithm 4.4, 116

midrange point, 301

minimum description length

Definition 9.1, 294

Minkowski distance, 234

Definition 8.1, 234

minority class

as an impurity measure, see impu-

rity measure, minority class

missing values, 322

Example 1.2, 27

mixture model, 266

ML, see maximum likelihood

MLM data set

Example 1.7, 40

clustering

Example 8.4, 249

hierarchical clustering

Example 8.6, 254

mode, 267, 299

model, 13, 50

declarative, 35

geometric, 21

grading, 36

grouping, 36

logical, 32

parametric, 195

probabilistic, 25

univariate, 40

model ensemble, 330

model selection, 265

model tree, 151

monotonic, 182, 305

more general than, 105

MSE, see mean squared error

multi-class classifier

performance

Example 3.1, 82

multi-class probabilities

Example 3.7, 91

multi-class scores

from decision tree, 86

from naive Bayes, 86

reweighting

Example 3.6, 90
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multi-label classification, 361

multi-task learning, 361

multinomial distribution, 274

multivariate linear regression, 277

multivariate naive Bayes

decomposition into univariate mod-

els, 32

multivariate normal distribution, 289

multivariate regression

decomposition into univariate re-

gression, 203, 364

n-gram, 322

naive Bayes, 30, 33, 203, 278, 315, 318,

322

assumption, 275

categorical features, 305

diagonal covariance matrix, 281

factorisation, 277, 281

ignores feature interaction, 44

linear in log-odds space, 277

multi-class scores, 86

prediction

Example 9.4, 276

recalibrated decision threshold, 277,

365

Scottish classifier, 32, 281

skewed probabilities, 277

training

Example 9.5, 280

variations, 280

nearest-neighbour classifier, 23, 242

nearest-neighbour retrieval, 243

negation ¬, 105

negative recall, 57

neighbour, 238

Nemenyi test, 356

neural network, 207

Newton, Isaac, 30

no free lunch theorem, 20, 340

noise, 50

instance, 50

label, 50

nominal feature, see feature, categorical

normal distribution, 220, 266, 305

multivariate, 267

multivariate standard, 267

standard, 267, 270

normal vector, 195

normalisation, 198

row, 90

null hypothesis, 352

objective function, 63, 213

Occam’s razor, 30

one-versus-one, 83

one-versus-rest, 83

online learning, 361

operating condition, 72

operating context, 345

optimisation

constrained, 212, 213

dual, 213, 214

multi-criterion, 59

primal, 213

quadratic, 212, 213

Opus, see rule learning systems

ordinal feature, see feature, ordinal

ordinal, 299

outlier, 198, 238, 302

Example 7.2, 199

output code, 83

output space, 50, 360

overfitting, 19, 33, 50, 91, 93, 97, 131,

151, 196, 210, 285, 323

Example 2, 6

p-norm, 234

p-value, 352
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PAC, see probably approximately correct

paired t-test, 353

Example 12.6, 353

PAM, see partitioning around medoids

PAM(D,K ,Dis)

Algorithm 8.3, 251

Pareto front, 59

partial order, 51

partition, 51

partition matrix, 97

partitioning around medoids, 250, 310

PCA, see principal component analysis

Pearson, Karl, 299

percentile, 301

Example 10.1, 302

percentile plot, 301

perceptron, 207, 210

online, 208

Perceptron(D,η)

Algorithm 7.1, 208

PerceptronRegression(D,T )

Algorithm 7.3, 211

piecewise linear, see linear, piecewise

population mean, 45

post-hoc test, 356

post-processing, 186

posterior odds, 28

Example 1.3, 29

posterior probability, 26, 262

powerset, 51

Príncipe, 343

precision, 57, 99, 167, 186, 300

Laplace-corrected, 170

predicates, see first-order logic

predicted positive rate, 347

predictive clustering, 96, 245, 289

predictive model, 17

predictor variable, see feature

preference learning, 361

principal component analysis, 24, 243,

324

prior odds, 28

prior probability, 27

probabilistic model

discriminative, 262

generative, 262

probability distribution

cumulative, 302

right-skewed, 303

probability estimation tree, 73–76, 141,

147, 262, 263, 265

probability smoothing, 75

probability space, 317

probably approximately correct, 124, 331

Progol, see ILP systems

projection, 219

Prolog, see query languages

propositional logic, 122

propositionalisation, 307

PruneTree(T,D)

Algorithm 5.3, 144

pruning, 33, 142

pruning set, 143

pseudo-counts, 75, 172, 274, 279

pseudo-metric, 236

pure, 133

purity, 35, 158

quantile, 301

quartile, 301

query, 306

query languages

Prolog, 189–191, 193, 306

SQL, 306

Rand index, 99

random forest, 129, 333, 339

random variable, 45

RandomForest(D,T,d)
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Algorithm 11.2, 333

range, 301

ranking, 64

Example 2.2, 64

accuracy

Example 2.3, 65

ranking accuracy, 64

ranking error, 64

ranking error rate, 64

recalibrated likelihood decision rule, 277

recall, 57, 58, 99, 300

average, 60, 178

receiver operating characteristic, 60

RecPart(S, f ,Q)

Algorithm 10.1, 311

recursive partitioning, 310

reduced-error pruning, 143, 147, 151

incremental, 192

refinement, 69

refinement loss, 76

regression, 14, 64

Example 3.8, 92

isotonic, 78

multivariate, 202

univariate, 196

regression coefficient, 198

regression tree

Example 5.4, 151

regressor, 91

regularisation, 204, 217, 294

reinforcement learning, 360

reject, 83

relation, 51

antisymmetric, 51

equivalence, see equivalence rela-

tion

reflexive, 51

symmetric, 51

total, 51

transitive, 51

residual, 93, 196

ridge regression, 205

Ripper, see rule learning systems

ROC curve, 67

ROC heaven, 69, 145

ROC plot, 60

Rocchio classifier, 241

rotation, 24

rule, 105

body, 157

head, 157

incomplete, 35

inconsistent, 35

overlap

Example 1.6, 35

rule learning systems

AQ, 192

CN2, 192, 357

Opus, 192

Ripper, 192, 341

Slipper, 341

Tertius, 193

rule list, 139, 157

Example 6.1, 159

as ranker

Example 6.2, 165

rule set, 157

Example 6.3, 167

as ranker

Example 6.4, 173

rule tree, 175

Example 6.5, 175

sample complexity, 124

sample covariance, 45

sample mean, 45

sample variance, 45

scale, 299

reciprocal, 300
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scaling, 24

uniform, 24

scaling matrix, 201

scatter, 97, 246

Definition 8.3, 246

reduction by partitioning

Example 8.3, 247

within-cluster, 97

scatter matrix, 200, 245, 325

between-cluster, 246

within-cluster, 246

scoring classifier, 61

Scottish classifier, see naive Bayes

SE, see squared error

search heuristic, 63

seed example, 170

segment, 36

semi-supervised learning, 18

sensitivity, 55, 57

separability

conjunctive

Example 4.4, 116

separate-and-conquer, 35, 161, 163

sequence prediction, 361

sequential minimal optimisation, 229

set, 51

cardinality, 51

complement, 51

difference, 51

disjoint, 51

intersection, 51

subset, 51

union, 51

Shannon, Claude, 294

shatter, 126

shattering a set of instances

Example 4.7, 126

shrinkage, 204

sigmoid, 221

signal detection theory, 60, 316

significance test, 352

silhouette, 252

similarity, 72

Example 1.1, 15

singular value decomposition, 324

skewness, 303

Example 10.3, 304

slack variable, 216, 294

Slipper, see rule learning systems

slope, 195

soft margin, 217

SpamAssassin, 1–14, 61, 72

sparse data, 22

sparsity, 205

specific, 46

specificity, 55, 57

split, 132

binary, 40

splitting criterion

cost-sensitivity

Example 5.3, 144

SQL, see query languages

squared error, 73

squared Euclidean distance, 238

stacking, 339

standard deviation, 301

statistic

of central tendency, 299

of dispersion, 299

shape, 299, 303

stop word, 280

stopping criterion, 163, 310

structured output prediction, 361

sub-additivity, 236

subgroup, 100, 178

evaluation

Example 6.6, 180

extension, 100
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subgroup discovery, 17

Example 3.11, 100

subspace sampling, 333

supervised learning, 14, 17, 46

support, 182

support vector, 211

support vector machine, 22, 63, 211, 305

complexity parameter, 217

SVD, see singular value decomposition

SVM, see support vector machine

t-distribution, 353

target variable, 25, 91, 262

task, 13

terms, see first-order logic

Tertius, see rule learning systems

test set, 19, 50

Texas Instruments TI-58 programmable

calculator, 228

text classification, 7, 11, 22

thresholding

Example 10.5, 309

total order, 51

training set, 14, 50

transaction, 182

transfer learning, 361

translation, 24

tree learning systems

C4.5, 156

CART, 156

ID3, 155

triangle inequality, 236

trigram, 322

true negative, 55

true negative rate, 55, 57

true positive, 55

true positive rate, 55, 57, 99

turning rankers into classifiers, 278

underfitting, 196

unification, 123

Example 4.6, 123

unigram, 322

universe of discourse, 51, 105

unstable, 204

unsupervised learning, 14, 17, 47

Vapnik, Vladimir, 125

variance, 24, 45, 94, 149, 198, 200, 301,

303

Gini index as, 148

VC-dimension, 125

linear classifier, 126

version space, 113

Definition 4.1, 113

Viagra, 7–44

vocabulary, 7

Voronoi diagram, 98

Voronoi tesselation, 241

voting

one-versus-one

Example 3.2, 85

Warmr, see association rule algorithms

weak learnability, 331

weighted covering, 181, 338

Example 6.7, 181

weighted relative accuracy, 179

WeightedCovering(D)

Algorithm 6.5, 182

Wilcoxon’s signed-rank test, 354

Example 12.7, 355

Wilcoxon-Mann-Whitney statistic, 80

χ2 statistic, 101, 312, 323

Xbox game console, 129

z-score, 267, 314, 316
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